日韩精品福利免费观看高清,综合亚洲国产2020,99热只有精品这里,国产精品久久久久久久福利

    1. <address id="kobe1"></address>
      
      
      <td id="kobe1"><tbody id="kobe1"><listing id="kobe1"></listing></tbody></td>

        我要投稿 投訴建議

        我的自畫(huà)像四年級(jí)作文400字

        時(shí)間:2024-06-20 18:26:06 四年級(jí) 我要投稿
        • 相關(guān)推薦

        我的自畫(huà)像四年級(jí)作文400字15篇(經(jīng)典)

          在日常生活或是工作學(xué)習(xí)中,大家都經(jīng)常接觸到作文吧,作文根據(jù)寫(xiě)作時(shí)限的不同可以分為限時(shí)作文和非限時(shí)作文。相信許多人會(huì)覺(jué)得作文很難寫(xiě)吧,下面是小編整理的我的自畫(huà)像四年級(jí)作文400字,歡迎閱讀與收藏。

        我的自畫(huà)像四年級(jí)作文400字15篇(經(jīng)典)

        我的自畫(huà)像四年級(jí)作文400字1

          初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)及解法

          基本知識(shí)

          數(shù)與代數(shù)A、數(shù)與式:

          1、有理數(shù)

          有理數(shù):

         、僬麛(shù)正整數(shù)/0/負(fù)整數(shù)

         、诜?jǐn)?shù)正分?jǐn)?shù)/負(fù)分?jǐn)?shù)

          數(shù)軸:

          ①畫(huà)一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较颍偷玫綌?shù)軸。

         、谌魏我粋(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。

         、廴绻麅蓚(gè)數(shù)只有符號(hào)不同,那么我們稱(chēng)其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱(chēng)這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。

          ④數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。

          絕對(duì)值:

         、僭跀(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。

         、谡龜(shù)的絕對(duì)值是他的本身、負(fù)數(shù)的絕對(duì)值是他的相反數(shù)、0的絕對(duì)值是0。兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小。

          有理數(shù)的運(yùn)算:

          加法:

          ①同號(hào)相加,取相同的符號(hào),把絕對(duì)值相加。

         、诋愄(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。

         、垡粋(gè)數(shù)與0相加不變。

          減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。

          乘法:

          ①兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。

         、谌魏螖(shù)與0相乘得0。

         、鄢朔e為1的兩個(gè)有理數(shù)互為倒數(shù)。

          除法:

          ①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。

          ②0不能作除數(shù)。

          乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。

          混合順序:先算乘法,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的。

          2、實(shí)數(shù)

          無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫無(wú)理數(shù)

          平方根:

         、偃绻粋(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。

         、谌绻粋(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。

         、垡粋(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒(méi)有平方根。

         、芮笠粋(gè)數(shù)A的平方根運(yùn)算,叫做開(kāi)平方,其中A叫做被開(kāi)方數(shù)。

          立方根:

         、偃绻粋(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。

         、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。

         、矍笠粋(gè)數(shù)A的立方根的運(yùn)算叫開(kāi)立方,其中A叫做被開(kāi)方數(shù)。

          實(shí)數(shù):

         、賹(shí)數(shù)分有理數(shù)和無(wú)理數(shù)。

         、谠趯(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣。

          ③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。

          3、代數(shù)式

          代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。

          合并同類(lèi)項(xiàng):①所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類(lèi)項(xiàng)。②把同類(lèi)項(xiàng)合并成一項(xiàng)就叫做合并同類(lèi)項(xiàng)。③在合并同類(lèi)項(xiàng)時(shí),我們把同類(lèi)項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。

          4、整式與分式

          整式:

         、贁(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱(chēng)整式。

         、谝粋(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。

         、垡粋(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。

          整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類(lèi)項(xiàng)。

          冪的運(yùn)算:

         、 同底數(shù)冪相乘:a^ma^n=a^(m+n)

         、 冪的乘方:(a^m)n=a^mn

         、 積的乘方:(ab)^m=a^mb^m

         、 同底數(shù)冪相除:a^ma^n=a^(m-n) (a0)

          這些公式也可以這樣用:⑤a^(m+n)= a^ma^n

          ⑥a^mn=(a^m)n

         、遖^mb^m=(ab)^m

         、 a^(m-n)= a^ma^n (a0)

          整式的乘法:

         、賳雾(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。

         、趩雾(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。

         、鄱囗(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。

          公式兩條:平方差公式/完全平方公式

          整式的除法:

         、賳雾(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。

         、诙囗(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。

          分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。

          方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。

          分式:①整式A除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對(duì)于任何一個(gè)分式,分母不為0。②分式的分子與分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。

          分式的運(yùn)算:

          乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

          除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。

          加減法:

          ①同分母分式相加減,分母不變,把分子相加減。

          ②異分母的分式先通分,化為同分母的分式,再加減。

          分式方程:

         、俜帜钢泻形粗獢(shù)的方程叫分式方程。

         、谑狗匠痰姆帜笧0的解稱(chēng)為原方程的增根。

          方程與不等式

          1、方程與方程組

          一元一次方程:

          ①在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。

         、诘仁絻蛇呁瑫r(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。

          解一元一次方程的步驟:去分母,移項(xiàng),合并同類(lèi)項(xiàng),未知數(shù)系數(shù)化為1。

          二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的`項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。

          二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。

          適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。

          二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。

          解二元一次方程組的方法:代入消元法/加減消元法。

          一元二次方程:只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程

          1、一元二次方程的二次函數(shù)的關(guān)系

          大家已經(jīng)學(xué)過(guò)二次函數(shù)(即拋物線)了,對(duì)它也有很深的了解,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數(shù)來(lái)表示,其實(shí)一元二次方程也是二次函數(shù)的一個(gè)特殊情況,就是當(dāng)Y的0的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來(lái),一元二次方程就是二次函數(shù)中,圖象與X軸的交點(diǎn)。也就是該方程的解了。

          2、一元二次方程的解法

          大家知道,二次函數(shù)有頂點(diǎn)式(,),這大家要記住,很重要,因?yàn)樵谏厦嬉呀?jīng)說(shuō)過(guò)了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解。

          (1)配方法

          利用配方,使方程變?yōu)橥耆椒焦,在用直接開(kāi)平方法去求出解。

          (2)分解因式法

          提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解。

          (3)公式法

          這方法也可以是在解一元二次方程的萬(wàn)能方法了,方程的根X1={-b+[b2-4ac)]}/2a,X2={-b-[b2-4ac)]}/2a

          3、解一元二次方程的步驟:

          (1)配方法的步驟:

          先把常數(shù)項(xiàng)移到方程的右邊,再把二次項(xiàng)的系數(shù)化為1,再同時(shí)加上1次項(xiàng)的系數(shù)的一半的平方,最后配成完全平方公式。

          (2)分解因式法的步驟:

          把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式。

          (3)公式法

          就把一元二次方程的各系數(shù)分別代入,這里二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b,常數(shù)項(xiàng)的系數(shù)為c。

          4、韋達(dá)定理

          利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=,二根之積=

          也可以表示為x1+x2=,x1x2=。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用。

          5、一元一次方程根的情況

          利用根的判別式去了解,根的判別式可在書(shū)面上可以寫(xiě)為△,讀作diao ta,而△=b2-4ac,這里可以分為3種情況:

          I當(dāng)△0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根;

          II當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根;

          III當(dāng)△0時(shí),一元二次方程沒(méi)有實(shí)數(shù)根(在這里,學(xué)到高中就會(huì)知道,這里有2個(gè)虛數(shù)根)。

          2、不等式與不等式組

          不等式:

          ①用符號(hào)〉,=,〈號(hào)連接的式子叫不等式。

         、诓坏仁降膬蛇叾技由匣驕p去同一個(gè)整式,不等號(hào)的方向不變。

         、鄄坏仁降膬蛇叾汲艘曰蛘叱砸粋(gè)正數(shù),不等號(hào)方向不變。

         、懿坏仁降膬蛇叾汲艘曰虺酝粋(gè)負(fù)數(shù),不等號(hào)方向相反。

          不等式的解集:

         、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。

         、谝粋(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。

         、矍蟛坏仁浇饧倪^(guò)程叫做解不等式。

          一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。

          一元一次不等式組:

         、訇P(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。

          ②一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。

          ③求不等式組解集的過(guò)程,叫做解不等式組。

          一元一次不等式的符號(hào)方向:

          在一元一次不等式中,不像等式那樣,等號(hào)是不變的,他是隨著你加或乘的運(yùn)算改變。

          在不等式中,如果加上同一個(gè)數(shù)(或加上一個(gè)正數(shù)),不等式符號(hào)不改向;例如:AB,A+CB+C

          在不等式中,如果減去同一個(gè)數(shù)(或加上一個(gè)負(fù)數(shù)),不等式符號(hào)不改向;例如:AB,A-CB-C

          在不等式中,如果乘以同一個(gè)正數(shù),不等號(hào)不改向;例如:AB,A*CB*C(C0)

          在不等式中,如果乘以同一個(gè)負(fù)數(shù),不等號(hào)改向;例如:AB,A*C

          如果不等式乘以0,那么不等號(hào)改為等號(hào)

          所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立。

          函數(shù)

          變量:因變量,自變量。

          在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。

          一次函數(shù):

         、偃魞蓚(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱(chēng)Y是X的一次函數(shù)。

         、诋(dāng)B=0時(shí),稱(chēng)Y是X的正比例函數(shù)。

          一次函數(shù)的圖象:①把一個(gè)函數(shù)的自變量X與對(duì)應(yīng)的因變量Y的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。②正比例函數(shù)Y=KX的圖象是經(jīng)過(guò)原點(diǎn)的一條直線。③在一次函數(shù)中,當(dāng)K〈0,B〈O,則經(jīng)234象限;當(dāng)K〈0,B〉0時(shí),則經(jīng)124象限;當(dāng)K〉0,B〈0時(shí),則經(jīng)134象限;當(dāng)K〉0,B〉0時(shí),則經(jīng)123象限。④當(dāng)K〉0時(shí),Y的值隨X值的增大而增大,當(dāng)X〈0時(shí),Y的值隨X值的增大而減少。

          空間與圖形

          圖形的認(rèn)識(shí)

          1、點(diǎn),線,面

          點(diǎn),線,面:

         、賵D形是由點(diǎn),線,面構(gòu)成的。

         、诿媾c面相交得線,線與線相交得點(diǎn)。

         、埸c(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。

          展開(kāi)與折疊:

         、僭诶庵,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長(zhǎng)相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長(zhǎng)方體。

          ②N棱柱就是底面圖形有N條邊的棱柱。

          截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。

          視圖:主視圖,左視圖,俯視圖。

          多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

          弧、扇形:

         、儆梢粭l弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。

         、趫A可以分割成若干個(gè)扇形。

          角

          線:

          ①線段有兩個(gè)端點(diǎn)。

          ②將線段向一個(gè)方向無(wú)限延長(zhǎng)就形成了射線。射線只有一個(gè)端點(diǎn)。

         、蹖⒕段的兩端無(wú)限延長(zhǎng)就形成了直線。直線沒(méi)有端點(diǎn)。

         、芙(jīng)過(guò)兩點(diǎn)有且只有一條直線。

          比較長(zhǎng)短:

         、賰牲c(diǎn)之間的所有連線中,線段最短。

          ②兩點(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。

          角的度量與表示:

         、俳怯蓛蓷l具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。

         、谝欢鹊1/60是一分,一分的1/60是一秒。

          角的比較:

          ①角也可以看成是由一條射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。

          ②一條射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角。

         、蹚囊粋(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。

          平行:

         、偻黄矫鎯(nèi),不相交的兩條直線叫做平行線。

         、诮(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行。

          ③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。

          垂直:

         、偃绻麅蓷l直線相交成直角,那么這兩條直線互相垂直。

          ②互相垂直的兩條直線的交點(diǎn)叫做垂足。

         、燮矫鎯(nèi),過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。

          垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

          垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無(wú)限延長(zhǎng)有關(guān),再看后面的,垂直平分線是一條直線,所以在畫(huà)垂直平分線的時(shí)候,確定了2點(diǎn)后(關(guān)于畫(huà)法,后面會(huì)講)一定要把線段穿出2點(diǎn)。

          垂直平分線定理:

          性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等;

          判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上

          角平分線:把一個(gè)角平分的射線叫該角的角平分線。

          定義中有幾個(gè)要點(diǎn)要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會(huì)出現(xiàn)直線,這是角平分線的對(duì)稱(chēng)軸才會(huì)用直線的,這也涉及到軌跡的問(wèn)題,一個(gè)角個(gè)角平分線就是到角兩邊距離相等的點(diǎn)

          性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等

          判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上

          正方形:一組鄰邊相等的矩形是正方形

          性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)

          判定:

          1、對(duì)角線相等的菱形

          2、鄰邊相等的矩形

          基本方法

          1、配方法

          所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。通過(guò)配方解決數(shù)學(xué)問(wèn)題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。

          2、因式分解法

          因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。

          3、換元法

          換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱(chēng)為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問(wèn)題易于解決。

          4、判別式法與韋達(dá)定理

          一元二次方程ax2+bx+c=0(a、b、c屬于R,a0)根的判別,△=b2-4ac,不僅用來(lái)判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。

          韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以求根的對(duì)稱(chēng)函數(shù),計(jì)論二次方程根的符號(hào),解對(duì)稱(chēng)方程組,以及解一些有關(guān)二次曲線的問(wèn)題等

          5、待定系數(shù)法

          在解數(shù)學(xué)問(wèn)題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問(wèn)題,這種解題方法稱(chēng)為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。

          6、構(gòu)造法

          在解題時(shí),我們常常會(huì)采用這樣的方法,通過(guò)對(duì)條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問(wèn)題得以解決,這種解題的數(shù)學(xué)方法,我們稱(chēng)為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識(shí)互相滲透,有利于問(wèn)題的解決。

          7、反證法

          反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過(guò)正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。

          反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一個(gè)、一個(gè)也沒(méi)有;至少有n個(gè)、至多有(n一1)個(gè);至多有一個(gè)、至少有兩個(gè);唯一、至少有兩個(gè)。

          歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過(guò)程沒(méi)有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無(wú)源之水,無(wú)本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類(lèi)型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。

          8、面積法

          平面幾何中講的面積公式以及由面積公式推出的與面積計(jì)算有關(guān)的性質(zhì)定理,不僅可用于計(jì)算面積,而且用它來(lái)證明平面幾何題有時(shí)會(huì)收到事半功倍的效果。運(yùn)用面積關(guān)系來(lái)證明或計(jì)算平面幾何題的方法,稱(chēng)為面積方法,它是幾何中的一種常用方法。

          用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來(lái),通過(guò)運(yùn)算達(dá)到求證的結(jié)果。所以用面積法來(lái)解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計(jì)算,有時(shí)可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。

          9、幾何變換法

          在數(shù)學(xué)問(wèn)題的研究中,常常運(yùn)用變換法,把復(fù)雜性問(wèn)題轉(zhuǎn)化為簡(jiǎn)單性的問(wèn)題而得到解決。所謂變換是一個(gè)**的任一元素到同一**的元素的一個(gè)一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來(lái)很難甚至于無(wú)法下手的習(xí)題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。另一方面,也可將變換的觀點(diǎn)滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運(yùn)動(dòng)中的研究結(jié)合起來(lái),有利于對(duì)圖形本質(zhì)的認(rèn)識(shí)。

          幾何變換包括:

          (1)平移;

          (2)旋轉(zhuǎn);

          (3)對(duì)稱(chēng)。

          10、客觀性題的解題方法

          選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類(lèi)題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識(shí)和基本技能,從而增大了試卷的容量和知識(shí)覆蓋面。

          填空題是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識(shí)復(fù)蓋面廣,評(píng)卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力和計(jì)算能力等優(yōu)點(diǎn),不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。

          要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計(jì)算、嚴(yán)密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過(guò)實(shí)例介紹常用方法。

          (1)直接推演法:直接從命題給出的條件出發(fā),運(yùn)用概念、公式、定理等進(jìn)行推理或運(yùn)算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。

          (2)驗(yàn)證法:由題設(shè)找出合適的驗(yàn)證條件,再通過(guò)驗(yàn)證,找出正確答案,亦可將供選擇的答案代入條件中去驗(yàn)證,找出正確答案,此法稱(chēng)為驗(yàn)證法(也稱(chēng)代入法)。當(dāng)遇到定量命題時(shí),常用此法。

          (3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設(shè)條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。

          (4)排除、篩選法:對(duì)于正確答案有且只有一個(gè)的選擇題,根據(jù)數(shù)學(xué)知識(shí)或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。

          (5)圖解法:借助于符合題設(shè)條件的圖形或圖象的性質(zhì)、特點(diǎn)來(lái)判斷,作出正確的選擇稱(chēng)為圖解法。圖解法是解選擇題常用方法之一。

          (6)分析法:直接通過(guò)對(duì)選擇題的條件和結(jié)論,作詳盡的分析、歸納和判斷,從而選出正確的結(jié)果,為分析法。

        我的自畫(huà)像四年級(jí)作文400字2

          誘導(dǎo)公式的本質(zhì)

          所謂三角函數(shù)誘導(dǎo)公式,就是將角n(/2)的三角函數(shù)轉(zhuǎn)化為角的三角函數(shù)。

          常用的誘導(dǎo)公式

          公式一: 設(shè)為任意角,終邊相同的角的同一三角函數(shù)的值相等:

          sin(2k)=sin kz

          cos(2k)=cos kz

          tan(2k)=tan kz

          cot(2k)=cot kz

          公式二: 設(shè)為任意角,的`三角函數(shù)值與的三角函數(shù)值之間的關(guān)系:

          sin()=-sin

          cos()=-cos

          tan()=tan

          cot()=cot

          公式三: 任意角與 -的三角函數(shù)值之間的關(guān)系:

          sin(-)=-sin

          cos(-)=cos

          tan(-)=-tan

          cot(-)=-cot

          公式四: 利用公式二和公式三可以得到與的三角函數(shù)值之間的關(guān)系:

          sin()=sin

          cos()=-cos

          tan()=-tan

          cot()=-cot

        我的自畫(huà)像四年級(jí)作文400字3

          20xx年的工作臨近尾聲,回首本年度真是忙碌而充實(shí),本年度我即擔(dān)任教導(dǎo)處主任一職又擔(dān)任班主任工作,經(jīng)常是忙的喝口水的時(shí)間都沒(méi)有。雖然在教導(dǎo)處主任的崗位上我只有不到一年的工作經(jīng)驗(yàn),但是在李校長(zhǎng)的關(guān)心和培養(yǎng)下,在全體領(lǐng)導(dǎo)、老師、家長(zhǎng)的熱情支持和幫助下,各項(xiàng)工作得以順利開(kāi)展并在一些方面有了較為明顯的進(jìn)步,F(xiàn)對(duì)自己一年來(lái)所做工作加以梳理和反思,力求在總結(jié)中發(fā)現(xiàn)不足,在反思中縮中差距,在創(chuàng)新中不斷提升。

          一、思想品德方面

          我熱愛(ài)教育事業(yè),始初不忘人民教師職責(zé),愛(ài)學(xué)校、愛(ài)學(xué)生。作為一名名師,我從自身嚴(yán)格要求自己,通過(guò)政治思想、學(xué)識(shí)水平、教育教學(xué)能力等方面的不斷提高來(lái)塑造自己的行為,使自己在教育行業(yè)中不斷成長(zhǎng),為社會(huì)培養(yǎng)出優(yōu)秀的人才,打下堅(jiān)實(shí)的基礎(chǔ)。

          二、主要成績(jī)

          今年是我到工作的第五個(gè)年頭,幾年來(lái)我一直擔(dān)任班主任和年級(jí)的組長(zhǎng),同時(shí)又負(fù)責(zé)學(xué)校教導(dǎo)處工作,一直以來(lái),我始初牢記"踏實(shí)工作、真心待人"的原則,在工作中嚴(yán)格要求自己,刻苦鉆研業(yè)務(wù),不斷提高業(yè)務(wù)水平,不斷學(xué)習(xí)新知識(shí),探索教育教學(xué)規(guī)律,改進(jìn)教育教學(xué)方法,努力使自己成為專(zhuān)家型教師。

          1、在班主任工作方面:我投入了極強(qiáng)的責(zé)任心,關(guān)注每一名學(xué)生,及時(shí)發(fā)現(xiàn)他們的各種心理或行為動(dòng)態(tài),還有學(xué)習(xí)的心態(tài)與學(xué)習(xí)情況,用愛(ài)心與耐心澆灌每一個(gè)孩子,并且及時(shí)與家長(zhǎng)、科任老師進(jìn)行溝通,使孩子在各個(gè)方面得到發(fā)展,幾年來(lái),與學(xué)生形成了亦師亦友的和諧師生關(guān)系,在18年被評(píng)為省級(jí)師德先進(jìn)個(gè)人,19年被評(píng)為省級(jí)優(yōu)秀教師。加強(qiáng)學(xué)習(xí),努力提升自身修為。

          2、在教學(xué)方面:我嚴(yán)格要求自己,用心備課上課,每一節(jié)課都精心準(zhǔn)備課件,仔細(xì)研究每一道習(xí)題,真正做到講練結(jié)合,學(xué)以致用,形成了趣實(shí)活新的教學(xué)風(fēng)格,同時(shí),在教研方面,我積極去聽(tīng)課評(píng)課,認(rèn)真學(xué)習(xí)別人上課的長(zhǎng)處,為己所用。在17年被評(píng)為市級(jí)名師工作室主持人,18年被評(píng)為省級(jí)學(xué)科帶頭人。

          3、在教導(dǎo)方面:在做好班主任工作的同時(shí),我作為校長(zhǎng)助理、教導(dǎo)主任,我能正確定位,努力做好校長(zhǎng)的助手,協(xié)調(diào)各種工作。

          一直以來(lái)我總是以飽滿(mǎn)的熱情對(duì)待本職工作,兢兢業(yè)業(yè),忠于職守,凡是要求老師們做到的,自己首先做到。我始初認(rèn)真落實(shí)學(xué)校制定的教學(xué)教研常規(guī),不斷規(guī)范教師教學(xué)行為。從學(xué)期初開(kāi)始,認(rèn)真執(zhí)行教學(xué)教研工作計(jì)劃和工作記錄,嚴(yán)格按照學(xué)校修訂的規(guī)章制度去要求師生,定期檢查教師教案及作業(yè)批改情況,發(fā)現(xiàn)問(wèn)題及時(shí)反饋及時(shí)做好總結(jié)并進(jìn)行跟蹤檢查,期末對(duì)教案進(jìn)行歸納整理。規(guī)范日常巡課制度,定時(shí)巡課與不定時(shí)巡課相結(jié)合,不定時(shí)跟班聽(tīng)課,與執(zhí)教教師共同切磋存在的問(wèn)題,加強(qiáng)對(duì)教學(xué)工作的監(jiān)控,促進(jìn)教學(xué)質(zhì)量的提高。

          學(xué)校要發(fā)展、要生存必須有一批高素質(zhì)的教師隊(duì)伍,同樣教師今后要生存要發(fā)展必須具有過(guò)硬的本領(lǐng)。我清楚的認(rèn)識(shí)到必須加強(qiáng)骨干教師、青年教師的培養(yǎng)力度,也借助各種機(jī)遇,為教師搭建自我展示的平臺(tái)。加大新教師的培養(yǎng)力度,開(kāi)展“師徒結(jié)對(duì)子”活動(dòng),通過(guò)推門(mén)聽(tīng)課,領(lǐng)導(dǎo)聽(tīng)課、一課三研、師傅引領(lǐng)課、新教師展示課等,鼓勵(lì)教師參加各級(jí)各類(lèi)比賽、培訓(xùn)活動(dòng)等形式,促進(jìn)新教師的迅速成長(zhǎng)。我精心制定了以人為本的校本培訓(xùn)計(jì)劃,每學(xué)期開(kāi)展十多次骨干培訓(xùn)活動(dòng),并進(jìn)行讀書(shū)交流活動(dòng),活動(dòng)做到人人有準(zhǔn)備,人人有發(fā)言,人人有反思,老師們一同感悟,一起分享,在探索和交流中,不斷提升教學(xué)水準(zhǔn)。

          通過(guò)開(kāi)展語(yǔ)、數(shù)集體備課—上課—聽(tīng)課——評(píng)課研討這樣的教研活動(dòng)觀摩,讓更多的教師參與到校本教研活動(dòng)中來(lái),增強(qiáng)了教研活動(dòng)的實(shí)效性,提高了教師的課堂教學(xué)水平。新教師展示課活動(dòng),“中荷才露尖尖角”,新教師在歷練中成長(zhǎng);常態(tài)化的研討課,“萬(wàn)紫千紅總是春”,老師們?nèi)¢L(zhǎng)補(bǔ)短,共同促進(jìn);名師、骨干教師的精品課,“萬(wàn)綠叢中一點(diǎn)紅”,起了引領(lǐng)示范的作用。

          教科研是教學(xué)的源泉,是教改的先導(dǎo),我十分重視課題研究、管理。18年獨(dú)立承擔(dān)了省級(jí)重點(diǎn)課題研究已經(jīng)結(jié)題,并被評(píng)為科研課題先進(jìn)個(gè)人,19年又獨(dú)立承擔(dān)了中課題的研究,已經(jīng)接近尾聲。

          4、自身提高方面:我能利用課余時(shí)間閱讀一些教育名著及教育教學(xué)刊物,并及時(shí)做好讀書(shū)筆記,建立個(gè)人博客,發(fā)表自己原創(chuàng)的教學(xué)感想、教案設(shè)計(jì)、學(xué)習(xí)心得、教育理念等文章。一份耕耘,一份收獲”,一年來(lái),我積極參加各級(jí)各類(lèi)比賽,多次獲獎(jiǎng),還被評(píng)為縣級(jí)學(xué)科帶頭人。

          三、存在的不足

          回顧一年來(lái)的工作,我雖然取得了一些成績(jī),積累了一些經(jīng)驗(yàn),但是,實(shí)事求是地說(shuō),與領(lǐng)導(dǎo)的要求和自己的期待還有差距,主要表現(xiàn)在:

          1、對(duì)教導(dǎo)處管理工作還須腳踏實(shí)地地去做,謙虛認(rèn)真地去學(xué),以使自己取得更好的成績(jī)。

          2、教學(xué)方面對(duì)差生主要是采取開(kāi)中灶、嚴(yán)要求的方式進(jìn)行強(qiáng)化管理,對(duì)其心理攻堅(jiān)尚不到位,所以見(jiàn)效慢,容易激化師生間的矛盾,還得在實(shí)踐中多摸索。課堂教學(xué)水平有待提高,要與同事們多切磋,多學(xué)習(xí)。

          3、教研方面,仍需強(qiáng)化、深化、細(xì)化地系統(tǒng)學(xué)習(xí)相關(guān)理論知識(shí),所寫(xiě)隨感不能僅僅停留在表面現(xiàn)象,還應(yīng)善于總結(jié)提升,以形成有一定深度的`,并具有自我指導(dǎo)意義的理論型文字。

          另外,意志仍不夠堅(jiān)強(qiáng),堅(jiān)持還不夠徹底,實(shí)是欠缺“鐵杵磨成針”的精神。總之,回顧取得的成績(jī),固然可喜,值得欣慰,但面對(duì)未來(lái),仍感任重道遠(yuǎn)、不敢懈怠。

          最后,用一句話(huà)作為本年度的工作總結(jié),下一年度的開(kāi)始,也就是:既然選擇了遠(yuǎn)方,必然風(fēng)雨兼程。我將某某,繼續(xù)前行!

          關(guān)于數(shù)學(xué)常見(jiàn)誤區(qū)有哪些

          1、被動(dòng)學(xué)習(xí)

          許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強(qiáng)的依賴(lài)心理,跟隨老師慣性運(yùn)轉(zhuǎn),沒(méi)有掌握學(xué)習(xí)主動(dòng)權(quán).表現(xiàn)在不定計(jì)劃,坐等上課,課前沒(méi)有預(yù)習(xí),對(duì)老師要上課的內(nèi)容不了解,上課忙于記筆記,沒(méi)聽(tīng)到“門(mén)道”,沒(méi)有真正理解所學(xué)內(nèi)容。

          2、學(xué)不得法

          老師上課一般都要講清知識(shí)的來(lái)龍去脈,剖析概念的內(nèi)涵,分析重點(diǎn)難點(diǎn),突出思想方法。而一部分同學(xué)上課沒(méi)能專(zhuān)心聽(tīng)課,對(duì)要點(diǎn)沒(méi)聽(tīng)到或聽(tīng)不全,筆記記了一大本,問(wèn)題也有一大堆,課后又不能及時(shí)鞏固、總結(jié)、尋找知識(shí)間的聯(lián)系,只是趕做作業(yè),亂套題型,對(duì)概念、法則、公式、定理一知半解,機(jī)械模仿,死記硬背。也有的晚上加班加點(diǎn),白天無(wú)精打采,或是上課根本不聽(tīng),自己另搞一套,結(jié)果是事倍功半,收效甚微。

          3、不重視基礎(chǔ)

          一些“自我感覺(jué)良好”的同學(xué),常輕視基本知識(shí)、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書(shū)寫(xiě),但對(duì)難題很感興趣,以顯示自己的“水平”,好高鶩遠(yuǎn),重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯(cuò)就是中途“卡殼”。

          4、進(jìn)一步學(xué)習(xí)條件不具備

          高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識(shí)的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識(shí)與技能為進(jìn)一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高。

          如二次函數(shù)在閉區(qū)間上的最值問(wèn)題,函數(shù)值域的求法,實(shí)根分布與參變量方程,三角公式的變形與靈活運(yùn)用,空間概念的形成,排列組合應(yīng)用題及實(shí)際應(yīng)用問(wèn)題等?陀^上這些觀點(diǎn)就是分化點(diǎn),有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補(bǔ)救措施,查缺補(bǔ)漏,分化是不可避免的。

        我的自畫(huà)像四年級(jí)作文400字4

          三角形的知識(shí)點(diǎn)

          1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

          2、三角形的分類(lèi)

          3、三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

          4、高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。

          5、中線:在三角形中,連接一個(gè)頂點(diǎn)和它的對(duì)邊中點(diǎn)的線段叫做三角形的中線。

          6、角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線。

          7、高線、中線、角平分線的意義和做法

          8、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性。

          9、三角形內(nèi)角和定理:三角形三個(gè)內(nèi)角的和等于180°

          推論1直角三角形的兩個(gè)銳角互余

          推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角和

          推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;三角形的內(nèi)角和是外角和的一半

          10、三角形的外角:三角形的一條邊與另一條邊延長(zhǎng)線的夾角,叫做三角形的外角。

          11、三角形外角的性質(zhì)

          (1)頂點(diǎn)是三角形的一個(gè)頂點(diǎn),一邊是三角形的一邊,另一邊是三角形的一邊的延長(zhǎng)線;

          (2)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角和;

          (3)三角形的一個(gè)外角大于與它不相鄰的任一內(nèi)角;

          (4)三角形的外角和是360°。

          四邊形(含多邊形)知識(shí)點(diǎn)、概念總結(jié)

          一、平行四邊形的定義、性質(zhì)及判定

          1、兩組對(duì)邊平行的四邊形是平行四邊形。

          2、性質(zhì):

          (1)平行四邊形的對(duì)邊相等且平行

          (2)平行四邊形的對(duì)角相等,鄰角互補(bǔ)

          (3)平行四邊形的對(duì)角線互相平分

          3、判定:

          (1)兩組對(duì)邊分別平行的四邊形是平行四邊形

          (2)兩組對(duì)邊分別相等的四邊形是平行四邊形

          (3)一組對(duì)邊平行且相等的'四邊形是平行四邊形

          (4)兩組對(duì)角分別相等的四邊形是平行四邊形

          (5)對(duì)角線互相平分的四邊形是平行四邊形

          4、對(duì)稱(chēng)性:平行四邊形是中心對(duì)稱(chēng)圖形

          二、矩形的定義、性質(zhì)及判定

          1、定義:有一個(gè)角是直角的平行四邊形叫做矩形

          2、性質(zhì):矩形的四個(gè)角都是直角,矩形的對(duì)角線相等

          3、判定:

          (1)有一個(gè)角是直角的平行四邊形叫做矩形

          (2)有三個(gè)角是直角的四邊形是矩形

          (3)兩條對(duì)角線相等的平行四邊形是矩形

          4、對(duì)稱(chēng)性:矩形是軸對(duì)稱(chēng)圖形也是中心對(duì)稱(chēng)圖形。

          三、菱形的定義、性質(zhì)及判定

          1、定義:有一組鄰邊相等的平行四邊形叫做菱形

          (1)菱形的四條邊都相等

          (2)菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角

          (3)菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形

          (4)菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半

          2、s菱=爭(zhēng)6(n、6分別為對(duì)角線長(zhǎng))

          3、判定:

          (1)有一組鄰邊相等的平行四邊形叫做菱形

          (2)四條邊都相等的四邊形是菱形

          (3)對(duì)角線互相垂直的平行四邊形是菱形

          4、對(duì)稱(chēng)性:菱形是軸對(duì)稱(chēng)圖形也是中心對(duì)稱(chēng)圖形

          四、正方形定義、性質(zhì)及判定

          1、定義:有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形

          2、性質(zhì):

          (1)正方形四個(gè)角都是直角,四條邊都相等

          (2)正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角

          (3)正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形

          (4)正方形的對(duì)角線與邊的夾角是45°

          (5)正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形

          3、判定:

          (1)先判定一個(gè)四邊形是矩形,再判定出有一組鄰邊相等

          (2)先判定一個(gè)四邊形是菱形,再判定出有一個(gè)角是直角

          4、對(duì)稱(chēng)性:正方形是軸對(duì)稱(chēng)圖形也是中心對(duì)稱(chēng)圖形

          五、梯形的定義、等腰梯形的性質(zhì)及判定

          1、定義:一組對(duì)邊平行,另一組對(duì)邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

          2、等腰梯形的性質(zhì):等腰梯形的兩腰相等;同一底上的兩個(gè)角相等;兩條對(duì)角線相等

          3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個(gè)角相等的梯形是等腰梯形;兩條對(duì)角線相等的梯形是等腰梯形

          4、對(duì)稱(chēng)性:等腰梯形是軸對(duì)稱(chēng)圖形

          六、三角形的中位線平行于三角形的第三邊并等于第三邊的一半;梯形的中位線平行于梯形的兩底并等于兩底和的一半。

          七、線段的重心是線段的中點(diǎn);平行四邊形的重心是兩對(duì)角線的交點(diǎn);三角形的重心是三條中線的交點(diǎn)。

          八、依次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形。

          九、多邊形

          1、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。

          2、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。

          3、多邊形的外角:多邊形的一邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角。

          4、多邊形的對(duì)角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線。

          5、多邊形的分類(lèi):分為凸多邊形及凹多邊形,凸多邊形又可稱(chēng)為平面多邊形,凹多邊形又稱(chēng)空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內(nèi)角相等。

          6、正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。

          7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

          8、公式與性質(zhì)

          多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°

          9、多邊形外角和定理:

          (1)n邊形外角和等于n·180°-(n-2)·180°=360°

          (2)邊形的每個(gè)內(nèi)角與它相鄰的外角是鄰補(bǔ)角,所以n邊形內(nèi)角和加外角和等于n·180°

          10、多邊形對(duì)角線的條數(shù):

          (1)從n邊形的一個(gè)頂點(diǎn)出發(fā)可以引(n-3)條對(duì)角線,把多邊形分詞(n-2)個(gè)三角形

          (2)n邊形共有n(n-3)/2條對(duì)角線

          圓知識(shí)點(diǎn)、概念總結(jié)

          1、不在同一直線上的三點(diǎn)確定一個(gè)圓。

          2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

          推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

         、谙业拇怪逼椒志經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧

          ③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

          推論2圓的兩條平行弦所夾的弧相等

          3、圓是以圓心為對(duì)稱(chēng)中心的中心對(duì)稱(chēng)圖形

          4、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

          5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

          6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

          7、同圓或等圓的半徑相等

          8、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

          9、定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

          10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。

          11、定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

          12、①直線L和⊙O相交d

          ②直線L和⊙O相切d=r

         、壑本L和⊙O相離d>r

          13、切線的判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線

          14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑

          15、推論1經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)

          16、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心

          17、切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角

          18、圓的外切四邊形的兩組對(duì)邊的和相等,外角等于內(nèi)對(duì)角

          19、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

          20、①兩圓外離d>R+r

          ②兩圓外切d=R+r

         、蹆蓤A相交R-rr)

          ④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含dr)

          21、定理:相交兩圓的連心線垂直平分兩圓的公共弦

          22、定理:把圓分成n(n≥3):

          (1)依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

          (2)經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

          23、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

          24、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

          25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

          26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(zhǎng)

          27、正三角形面積√3a/4a表示邊長(zhǎng)

          28、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

          29、弧長(zhǎng)計(jì)算公式:L=n兀R/180

          30、扇形面積公式:S扇形=n兀R^2/360=LR/2

          31、內(nèi)公切線長(zhǎng)=d-(R-r)外公切線長(zhǎng)=d-(R+r)

          32、定理:一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

          33、推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

          34、推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑

          35、弧長(zhǎng)公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r

        我的自畫(huà)像四年級(jí)作文400字5

          動(dòng)點(diǎn)與函數(shù)圖象問(wèn)題常見(jiàn)的四種類(lèi)型:

          1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運(yùn)動(dòng),根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

          2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運(yùn)動(dòng),判斷函數(shù)圖象.

          3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運(yùn)動(dòng),判斷函數(shù)圖象.

          4、直線、雙曲線、拋物線中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線、雙曲線、拋物線運(yùn)動(dòng),判斷函數(shù)圖象.

          圖形運(yùn)動(dòng)與函數(shù)圖象問(wèn)題常見(jiàn)的三種類(lèi)型:

          1、線段與多邊形的運(yùn)動(dòng)圖形問(wèn)題:把一條線段沿一定方向運(yùn)動(dòng)經(jīng)過(guò)三角形或四邊形,進(jìn)行分段,判斷函數(shù)圖象.

          2、多邊形與多邊形的運(yùn)動(dòng)圖形問(wèn)題:把一個(gè)三角形或四邊形沿一定方向運(yùn)動(dòng)經(jīng)過(guò)另一個(gè)多邊形,判斷函數(shù)圖象.

          3、多邊形與圓的運(yùn)動(dòng)圖形問(wèn)題:把一個(gè)圓沿一定方向運(yùn)動(dòng)經(jīng)過(guò)一個(gè)三角形或四邊形,或把一個(gè)三角形或四邊形沿一定方向運(yùn)動(dòng)經(jīng)過(guò)一個(gè)圓,判斷函數(shù)圖象.

          動(dòng)點(diǎn)問(wèn)題常見(jiàn)的四種類(lèi)型:

          1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運(yùn)動(dòng),通過(guò)全等或相似,探究構(gòu)成的新圖形與原圖形的邊或角的關(guān)系.

          2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運(yùn)動(dòng),通過(guò)探究構(gòu)成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系.

          3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運(yùn)動(dòng),探究構(gòu)成的新圖形的邊角等關(guān)系.

          4、直線、雙曲線、拋物線中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線、雙曲線、拋物線運(yùn)動(dòng),探究是否存在動(dòng)點(diǎn)構(gòu)成的三角形是等腰三角形或與已知圖形相似等問(wèn)題.

          總結(jié)反思:

          本題是二次函數(shù)的`綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線的性質(zhì)等,數(shù)形結(jié)合思想的應(yīng)用是解題的關(guān)鍵.

          解答動(dòng)態(tài)性問(wèn)題通常是對(duì)幾何圖形運(yùn)動(dòng)過(guò)程有一個(gè)完整、清晰的認(rèn)識(shí),發(fā)掘“動(dòng)”與“靜”的內(nèi)在聯(lián)系,尋求變化規(guī)律,從變中求不變,從而達(dá)到解題目的

          解答函數(shù)的圖象問(wèn)題一般遵循的步驟:

          1、根據(jù)自變量的取值范圍對(duì)函數(shù)進(jìn)行分段.

          2、求出每段的解析式.

          3、由每段的解析式確定每段圖象的形狀.

          對(duì)于用圖象描述分段函數(shù)的實(shí)際問(wèn)題,要抓住以下幾點(diǎn):

          1、自變量變化而函數(shù)值不變化的圖象用水平線段表示.

          2、自變量變化函數(shù)值也變化的增減變化情況.

          3、函數(shù)圖象的最低點(diǎn)和最高點(diǎn).

        我的自畫(huà)像四年級(jí)作文400字6

          有兩條邊相等的三角形叫等腰三角形

          相等的兩條邊叫腰;兩腰的夾角叫頂角;頂角所對(duì)的邊叫底;腰與底的夾角叫底角。

          等腰三角形性質(zhì)

          (1)具有一般三角形的邊角關(guān)系

          (2)等邊對(duì)等角;

          (3)底邊上的高、底邊上的中線、頂角平分線互相重合;

          (4)是軸對(duì)稱(chēng)圖形,對(duì)稱(chēng)軸是頂角平分線;

          (5)底邊小于腰長(zhǎng)的兩倍并且大于零,腰長(zhǎng)大于底邊的一半;

          (6)頂角等于180減去底角的兩倍;

          (7)頂角可以是銳角、直角、鈍角而底角只能是銳角

          等腰三角形分類(lèi):可分為腰和底邊不等的等腰三角形及等邊三角形

          等邊三角形性質(zhì)

         、倬邆涞妊切蔚囊磺行再|(zhì)。

         、诘冗吶切稳龡l邊都相等,三個(gè)內(nèi)角都相等并且每個(gè)都是60。

          等腰三角形的'判定

          ①利用定義;②等角對(duì)等邊;

          等邊三角形的判定

         、倮枚x:三邊相等的三角形是等邊三角形

          ②有一個(gè)角是60的等腰三角形是等邊三角形.

          含30銳角的直角三角形邊角關(guān)系:在直角三角形中,30銳角所對(duì)的直角邊等于斜邊的一半。

          三角形邊角的不等關(guān)系;長(zhǎng)邊對(duì)大角,短邊對(duì)小角;大角對(duì)長(zhǎng)邊,小角對(duì)短邊。

        我的自畫(huà)像四年級(jí)作文400字7

          1、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

          2、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

          3、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

          4、同圓或等圓的半徑相等

          5、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

          6、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線7、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

          8、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

          9、定理不在同一直線上的三點(diǎn)確定一個(gè)圓。

          10、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

          11、推論1:①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條、谙业拇怪逼椒志經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

          12、推論2:圓的兩條平行弦所夾的弧相等

          13、圓是以圓心為對(duì)稱(chēng)中心的中心對(duì)稱(chēng)圖形

          14、定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

          15、推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

          16、定理:一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

          17、推論:1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

          18、推論:2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑

          19、推論:3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

          20、定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

          21、①直線L和⊙O相交dr②直線L和⊙O相切d=r③直線L和⊙O相離dr

          22、切線的判定定理經(jīng)過(guò)半徑的.外端并且垂直于這條半徑的直線是圓的切線23、切線的性質(zhì)定理圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑24、推論1經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)25、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心

          26、切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等圓心和這一點(diǎn)的連線平分兩條切線的夾角

          27、圓的外切四邊形的兩組對(duì)邊的和相等

          28、弦切角定理:弦切角等于它所夾的弧對(duì)的圓周角

          29、推論:如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等30、相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等31、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

          32、切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)

          33、推論:從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等

          34、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

          35、①兩圓外離dR+r②兩圓外切d=R+r③兩圓相交R—rdR+r(Rr)④兩圓內(nèi)切d=R—r(Rr)⑤兩圓內(nèi)含dR—r(Rr)

          36、定理:相交兩圓的連心線垂直平分兩圓的公共弦

          37、定理:把圓分成n(n≥3):⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形⑵經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

          38、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

          39、正n邊形的每個(gè)內(nèi)角都等于(n—2)×180°/n40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

          41、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(zhǎng)42、正三角形面積√3a/4a表示邊長(zhǎng)

          43、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k(n—2)180°/n=360°化為(n—2)(k—2)=444、弧長(zhǎng)計(jì)算公式:L=n兀R/180

          45、扇形面積公式:S扇形=n兀R^2/360=LR/246、內(nèi)公切線長(zhǎng)=d—(R—r)外公切線長(zhǎng)=d—(R+r)

        我的自畫(huà)像四年級(jí)作文400字8

          一、平移變換:

          1、概念:在平面內(nèi),將一個(gè)圖形沿著某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)叫做平移。

          2、性質(zhì):

         。1)平移前后圖形全等;

         。2)對(duì)應(yīng)點(diǎn)連線平行或在同一直線上且相等。

          3、平移的作圖步驟和方法:

          (1)分清題目要求,確定平移的方向和平移的距離。

         。2)分析所作的圖形,找出構(gòu)成圖形的關(guān)健點(diǎn)。

         。3)沿一定的方向,按一定的距離平移各個(gè)關(guān)健點(diǎn)。

          (4)連接所作的各個(gè)關(guān)鍵點(diǎn),并標(biāo)上相應(yīng)的字母。

          (5)寫(xiě)出結(jié)論。

          二、旋轉(zhuǎn)變換:

          1、概念:在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)叫做旋轉(zhuǎn)。

          說(shuō)明:

          (1)圖形的旋轉(zhuǎn)是由旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度所決定的;

         。2)旋轉(zhuǎn)過(guò)程中旋轉(zhuǎn)中心始終保持不動(dòng)。

         。3)旋轉(zhuǎn)過(guò)程中旋轉(zhuǎn)的方向是相同的。

         。4)旋轉(zhuǎn)過(guò)程靜止時(shí),圖形上一個(gè)點(diǎn)的'旋轉(zhuǎn)角度是一樣的。⑤旋轉(zhuǎn)不改變圖形的大小和形狀。

          2、性質(zhì):

         。1)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;

         。2)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;

         。3)旋轉(zhuǎn)前、后的圖形全等。

          3、旋轉(zhuǎn)作圖的步驟和方法:

         。1)確定旋轉(zhuǎn)中心及旋轉(zhuǎn)方向、旋轉(zhuǎn)角;

         。2)找出圖形的關(guān)鍵點(diǎn);

         。3)將圖形的關(guān)鍵點(diǎn)和旋轉(zhuǎn)中心連接起來(lái),然后按旋轉(zhuǎn)方向分別將它們旋轉(zhuǎn)一個(gè)旋轉(zhuǎn)角度數(shù),得到這些關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn);

         。4)按原圖形順次連接這些對(duì)應(yīng)點(diǎn),所得到的圖形就是旋轉(zhuǎn)后的圖形。

          說(shuō)明:在旋轉(zhuǎn)作圖時(shí),一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的夾角即為旋轉(zhuǎn)角。

          4、常見(jiàn)考法

         。1)把平移旋轉(zhuǎn)結(jié)合起來(lái)證明三角形全等;

         。2)利用平移變換與旋轉(zhuǎn)變換的性質(zhì),設(shè)計(jì)一些題目。

          誤區(qū)提醒

         。1)弄反了坐標(biāo)平移的上加下減,左減右加的規(guī)律;

         。2)平移與旋轉(zhuǎn)的性質(zhì)沒(méi)有掌握。

        我的自畫(huà)像四年級(jí)作文400字9

          平面直角坐標(biāo)系

          下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

          平面直角坐標(biāo)系:

          在平面內(nèi)畫(huà)兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

          水平的數(shù)軸稱(chēng)為x軸或橫軸,豎直的數(shù)軸稱(chēng)為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

          平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合

          三個(gè)規(guī)定:

         、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

         、趩挝婚L(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

         、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

          相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

          初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成

          對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來(lái)學(xué)習(xí)哦。

          平面直角坐標(biāo)系的構(gòu)成

          在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱(chēng)為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱(chēng)為坐標(biāo)軸,它們的公共原點(diǎn)O稱(chēng)為直角坐標(biāo)系的原點(diǎn)。

          通過(guò)上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

          初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)

          下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。

          點(diǎn)的坐標(biāo)的性質(zhì)

          建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過(guò)來(lái),對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。

          對(duì)于平面內(nèi)任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。

          一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

          希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。

          初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟

          關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。

          因式分解的一般步驟

          如果多項(xiàng)式有公因式就先提公因式,沒(méi)有公因式的.多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,

          通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

          注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。

          相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。

          初中數(shù)學(xué)知識(shí)點(diǎn):因式分解

          下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。

          因式分解定義

          把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。

          因式分解要素

         、俳Y(jié)果必須是整式

         、诮Y(jié)果必須是積的形式

         、劢Y(jié)果是等式

         、芤蚴椒纸馀c整式乘法的關(guān)系:m(a+b+c)

          公因式:

          一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。

          公因式確定方法

         、傧禂(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。

         、谙嗤帜溉∽畹痛蝺

          ③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。

          提取公因式步驟:

         、俅_定公因式。

          ②確定商式

         、酃蚴脚c商式寫(xiě)成積的形式。

          分解因式注意;

         、俨粶(zhǔn)丟字母

         、诓粶(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)

         、垭p重括號(hào)化成單括號(hào)

         、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列

          ⑤相同因式寫(xiě)成冪的形式

         、奘醉(xiàng)負(fù)號(hào)放括號(hào)外

          ⑦括號(hào)內(nèi)同類(lèi)項(xiàng)合并。

          通過(guò)上面對(duì)因式分解內(nèi)容知識(shí)的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。

        我的自畫(huà)像四年級(jí)作文400字10

          動(dòng)點(diǎn)與函數(shù)圖象問(wèn)題常見(jiàn)的四種類(lèi)型:

           1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運(yùn)動(dòng),根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

          2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運(yùn)動(dòng),根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

          3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運(yùn)動(dòng),根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

          4、直線、雙曲線、拋物線中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線、雙曲線、拋物線運(yùn)動(dòng),根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

          圖形運(yùn)動(dòng)與函數(shù)圖象問(wèn)題常見(jiàn)的'三種類(lèi)型:

          1、線段與多邊形的運(yùn)動(dòng)圖形問(wèn)題:把一條線段沿一定方向運(yùn)動(dòng)經(jīng)過(guò)三角形或四邊形,根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.

          2、多邊形與多邊形的運(yùn)動(dòng)圖形問(wèn)題:把一個(gè)三角形或四邊形沿一定方向運(yùn)動(dòng)經(jīng)過(guò)另一個(gè)多邊形,根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.

          3、多邊形與圓的運(yùn)動(dòng)圖形問(wèn)題:把一個(gè)圓沿一定方向運(yùn)動(dòng)經(jīng)過(guò)一個(gè)三角形或四邊形,或把一個(gè)三角形或四邊形沿一定方向運(yùn)動(dòng)經(jīng)過(guò)一個(gè)圓,根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.

          動(dòng)點(diǎn)問(wèn)題常見(jiàn)的四種類(lèi)型:

          1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運(yùn)動(dòng),通過(guò)全等或相似,探究構(gòu)成的新圖形與原圖形的邊或角的關(guān)系.

          2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運(yùn)動(dòng),通過(guò)探究構(gòu)成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系.

          3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運(yùn)動(dòng),探究構(gòu)成的新圖形的邊角等關(guān)系.

          4、直線、雙曲線、拋物線中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線、雙曲線、拋物線運(yùn)動(dòng),探究是否存在動(dòng)點(diǎn)構(gòu)成的三角形是等腰三角形或與已知圖形相似等問(wèn)題.

          總結(jié)反思:

           本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線的性質(zhì)等,數(shù)形結(jié)合思想的應(yīng)用是解題的關(guān)鍵.

          解答動(dòng)態(tài)性問(wèn)題通常是對(duì)幾何圖形運(yùn)動(dòng)過(guò)程有一個(gè)完整、清晰的認(rèn)識(shí),發(fā)掘“動(dòng)”與“靜”的內(nèi)在聯(lián)系,尋求變化規(guī)律,從變中求不變,從而達(dá)到解題目的.

          解答函數(shù)的圖象問(wèn)題一般遵循的步驟:

           1、根據(jù)自變量的取值范圍對(duì)函數(shù)進(jìn)行分段.

          2、求出每段的解析式.

          3、由每段的解析式確定每段圖象的形狀.

          對(duì)于用圖象描述分段函數(shù)的實(shí)際問(wèn)題,要抓住以下幾點(diǎn):

          1、自變量變化而函數(shù)值不變化的圖象用水平線段表示.

          2、自變量變化函數(shù)值也變化的增減變化情況.

          3、函數(shù)圖象的最低點(diǎn)和最高點(diǎn).

        我的自畫(huà)像四年級(jí)作文400字11

          一、初中數(shù)學(xué)基本概念

          1.方程:含有未知數(shù)的等式叫做方程。

          2.一元一次方程:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程。

          3.二元一次方程:含有兩個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1的二元一次方程。

          4.二元一次方程組:由兩個(gè)二元一次方程組成的方程組。

          5.一元二次方程:含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程。

          6.一元二次方程的解:使一元二次方程左右兩邊相等的未知數(shù)的值。

          7.一元二次方程的根:一元二次方程的解。

          8.一元二次方程的判別式:當(dāng)a是正數(shù)時(shí),如果一元二次方程左右兩邊相等時(shí),那么這個(gè)一元二次方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)a是負(fù)數(shù)時(shí),如果一元二次方程左右兩邊相等時(shí),那么這個(gè)一元二次方程沒(méi)有實(shí)數(shù)根;當(dāng)a是零時(shí),如果一元二次方程左右兩邊相等時(shí),那么這個(gè)一元二次方程有兩個(gè)相等的.實(shí)數(shù)根。

          9.函數(shù):在某變化過(guò)程中有兩個(gè)變量x、y,如果對(duì)于x在某一范圍內(nèi)的每一個(gè)確定的值,y都有唯一的值與它對(duì)應(yīng),那么稱(chēng)y是x的函數(shù),x叫做自變量。

          10.一次函數(shù):在某個(gè)變化過(guò)程中有兩個(gè)變量x、y,如果對(duì)于x在某一范圍內(nèi)的每一個(gè)確定的值,y都有唯一的值與它對(duì)應(yīng),那么稱(chēng)y是x的一次函數(shù)。

          11.正比例函數(shù):在某個(gè)變化過(guò)程中有兩個(gè)變量x、y,如果對(duì)于x在某一范圍內(nèi)的每一個(gè)確定的值,y都有唯一的值與它對(duì)應(yīng),并且這個(gè)數(shù)值在比例上成正比,那么稱(chēng)y是x的比例函數(shù)。

          12.反比例函數(shù):在某個(gè)變化過(guò)程中有兩個(gè)變量x、y,如果對(duì)于x在某一范圍內(nèi)的每一個(gè)確定的值,y都有唯一的值與它對(duì)應(yīng),并且這個(gè)數(shù)值在比例上成反比,那么稱(chēng)y是x的反比例函數(shù)。

          13.平行四邊形:在同一個(gè)平面內(nèi)兩組對(duì)角分別平行的四邊形叫做平行四邊形。

          14.矩形:有一個(gè)內(nèi)角是直角的平行四邊形叫做矩形。

          15.菱形:有兩組鄰邊相等的平行四邊形叫做菱形。

          16.正方形:四邊相等的矩形叫做正方形。

          17.等腰梯形:兩條腰相等的梯形叫做等腰梯形。

          18.三角形:在同一個(gè)平面內(nèi)由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

          19.中線:連接一個(gè)頂點(diǎn)和它對(duì)邊的中點(diǎn)的線段叫做中線。

          20.高線:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊作垂線,垂足與頂點(diǎn)之間的線段叫做高線。

          21.角平分線:三角形的一個(gè)內(nèi)角的平分線與它的對(duì)邊相交,這個(gè)角的頂點(diǎn)與交點(diǎn)之間的線段叫做角平分線。

          22.中位線:連接三角形兩邊中點(diǎn)的線段叫做中位線。

          23.軸對(duì)稱(chēng)圖形:一條物體沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱(chēng)圖形。

          24.直接開(kāi)平方法:形如x2=p或者(nx+m)2=p(p≥0)的一元二次方程可采用直接開(kāi)平方的方法解一元二次方程的方法。

          25.配方法:把一元二次方程的常數(shù)項(xiàng)移到方程的右邊,兩邊加上一次項(xiàng)系數(shù)的一半的平方,再用右邊的式子除以左邊的式子,得到一個(gè)平方的形式,再用直接開(kāi)平方的方法求解一元二次方程的方法。

          26.公式法:用求根公式解一元二次方程的方法。

          27.因式分解法:將一元二次方程分解成兩個(gè)一次因式的積等于0的一元二次方程,然后將各個(gè)因式分解,得到一元一次方程,再用直接開(kāi)方法求解一元一次方程的方法。

          二、初中數(shù)學(xué)基本運(yùn)算

          1.整式:?jiǎn)雾?xiàng)式和多項(xiàng)式的統(tǒng)稱(chēng)。

          2.單項(xiàng)式:由數(shù)字和字母的積組成的代數(shù)式叫做單項(xiàng)式。單獨(dú)的一個(gè)數(shù)字或字母也叫做單項(xiàng)式。

          3.多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng)。其中不含字母的項(xiàng)叫做常數(shù)

        我的自畫(huà)像四年級(jí)作文400字12

          ∴當(dāng)x1時(shí)函數(shù)取得最大值,且ymax(1)2(1)13例4、已知函數(shù)f(x)x22(a1)x2

          4],求實(shí)數(shù)a的取值(1)若函數(shù)f(x)的遞減區(qū)間是(,4]上是減函數(shù),求實(shí)數(shù)a的取值范圍(2)若函數(shù)f(x)在區(qū)間(,分析:二次函數(shù)的單調(diào)區(qū)間是由其開(kāi)口方向及對(duì)稱(chēng)軸決定的,要分清函數(shù)在區(qū)間A上是單調(diào)函數(shù)及單調(diào)區(qū)間是A的區(qū)別與聯(lián)系

          解:(1)f(x)的對(duì)稱(chēng)軸是x可得函數(shù)圖像開(kāi)口向上

          2(a1)21a,且二次項(xiàng)系數(shù)為1>0

          1a]∴f(x)的'單調(diào)減區(qū)間為(,∴依題設(shè)條件可得1a4,解得a3

          4]上是減函數(shù)(2)∵f(x)在區(qū)間(,4]是遞減區(qū)間(,1a]的子區(qū)間∴(,∴1a4,解得a3

          例5、函數(shù)f(x)x2bx2,滿(mǎn)足:f(3x)f(3x)

         。1)求方程f(x)0的兩根x1,x2的和(2)比較f(1)、f(1)、f(4)的大小解:由f(3x)f(3x)知函數(shù)圖像的對(duì)稱(chēng)軸為x(3x)(3x)23

          b3可得b62f(x)x26x2(x3)211

          而f(x)的圖像與x軸交點(diǎn)(x1,0)、(x2,0)關(guān)于對(duì)稱(chēng)軸x3對(duì)稱(chēng)

          x1x223,可得x1x26

          第三章第32頁(yè)由二次項(xiàng)系數(shù)為1>0,可知拋物線開(kāi)口向上又134,132,431

          ∴依二次函數(shù)的對(duì)稱(chēng)性及單調(diào)性可f(4)f(1)f(1)(III)課后作業(yè)練習(xí)六

          (Ⅳ)教學(xué)后記:

          第三章第33頁(yè)

          擴(kuò)展閱讀:初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)歸納

          學(xué)大教育

          初中數(shù)學(xué)函數(shù)板塊的知識(shí)點(diǎn)總結(jié)與歸類(lèi)學(xué)習(xí)方法

          初中數(shù)學(xué)知識(shí)大綱中,函數(shù)知識(shí)占了很大的知識(shí)體系比例,學(xué)好了函數(shù),掌握了函數(shù)的基本性質(zhì)及其應(yīng)用,真正精通了函數(shù)的每一個(gè)模塊知識(shí),會(huì)做每一類(lèi)函數(shù)題型,就讀于中考中數(shù)學(xué)成功了一大半,數(shù)學(xué)成績(jī)自然上高峰,同時(shí),函數(shù)的思想是學(xué)好其他理科類(lèi)學(xué)科的基礎(chǔ)。初中數(shù)學(xué)從性質(zhì)上分,可以分為:一次函數(shù)、反比例函數(shù)、二次函數(shù)和銳角三角函數(shù),下面介紹各類(lèi)函數(shù)的定義、基本性質(zhì)、函數(shù)圖象及函數(shù)應(yīng)用思維方式方法。

          一、一次函數(shù)

          1.定義:在定義中應(yīng)注意的問(wèn)題y=kx+b中,k、b為常數(shù),且k≠0,x的指數(shù)一定為1。2.圖象及其性質(zhì)(1)形狀、直線

        我的自畫(huà)像四年級(jí)作文400字13

          一元一次方程定義

          通過(guò)化簡(jiǎn),只含有一個(gè)未知數(shù),且含有未知數(shù)的最高次項(xiàng)的次數(shù)是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b為常數(shù),且a≠0)。一元一次方程屬于整式方程,即方程兩邊都是整式。

          一元指方程僅含有一個(gè)未知數(shù),一次指未知數(shù)的次數(shù)為1,且未知數(shù)的系數(shù)不為0。我們將ax+b=0(其中x是未知數(shù),a、b是已知數(shù),并且a≠0)叫一元一次方程的標(biāo)準(zhǔn)形式。這里a是未知數(shù)的系數(shù),b是常數(shù),x的次數(shù)必須是1。

          即一元一次方程必須同時(shí)滿(mǎn)足4個(gè)條件:⑴它是等式;⑵分母中不含有未知數(shù);⑶未知數(shù)最高次項(xiàng)為1;⑷含未知數(shù)的項(xiàng)的系數(shù)不為0。

          一元一次方程的五個(gè)核心問(wèn)題

          一、什么是等式?1+1=1是等式嗎?

          表示相等關(guān)系的式子叫做等式,等式可分三類(lèi):第一類(lèi)是恒等式,就是用任何允許的數(shù)值代替等式中的.字母,等式的兩邊總是相等,由數(shù)字組成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二類(lèi)是條件等式,也就是方程,這類(lèi)等式只能取某些數(shù)值代替等式中的字母時(shí),等式才成立,如x+y=-5,x+4=7等都是條件等式;第三類(lèi)是矛盾等式,就是無(wú)論用任何值代替等式中的字母,等式總不成立,如x2=-2,|a|+5=0等。

          一個(gè)等式中,如果等號(hào)多于一個(gè),叫做連等式,連等式可以化為一組只含有一個(gè)等號(hào)的等式。

          等式與代數(shù)式不同,等式中含有等號(hào),代數(shù)式中不含等號(hào)。

          等式有兩個(gè)重要性質(zhì)1)等式的兩邊都加上或減去同一個(gè)數(shù)或同一個(gè)整式,所得結(jié)果仍然是一個(gè)等式;(2)等式的兩邊都乘以或除以同一個(gè)數(shù)除數(shù)不為零,所得結(jié)果仍然是一個(gè)等式。

          二、什么是方程,什么是一元一次方程?

          含有未知數(shù)的等式叫做方程,如2x-3=8,x+y=7等。判斷一個(gè)式子是否是方程,只需看兩點(diǎn):一是不是等式;二是否含有未知數(shù),兩者缺一不可。

          只含有一個(gè)未知數(shù),并且含未知數(shù)的式子都是整式,未知數(shù)的次數(shù)是1,系數(shù)不是0的方程叫做一元一次方程。其標(biāo)準(zhǔn)形式是ax+b=0(a不為0,a,b是已知數(shù)),值得注意的是1)一個(gè)整式方程的"元"和"次"是將這個(gè)方程化成最簡(jiǎn)形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化簡(jiǎn)后,它實(shí)際上是一個(gè)一元一次方程。(2)整式方程分母中不含有未知數(shù)。判斷是否為整式方程,是不能先將它化簡(jiǎn)的如方程x+1/x=2+1/x,因?yàn)樗姆帜钢泻形粗獢?shù)x,所以,它不是整式方程。如果將上面的方程進(jìn)行化簡(jiǎn),則為x=2,這時(shí)再去作判斷,將得到錯(cuò)誤的結(jié)論。

          凡是談到次數(shù)的方程,都是指整式方程,即方程的兩邊都是整式。一元一次方程是整式方程中元數(shù)最少且次數(shù)最低的方程。

          三、等式有什么牛掰的基本性質(zhì)嗎?

          將方程中的某些項(xiàng)改變符號(hào)后,從方程的一邊移到另一邊的變形叫做移項(xiàng),移項(xiàng)的依據(jù)是等式的基本性質(zhì)1。

          移項(xiàng)時(shí)不一定要把含未知數(shù)的項(xiàng)移到等式的左邊。如解方程3x-2=4x-5時(shí)就可以把含未知數(shù)的項(xiàng)移到右邊,而把常數(shù)項(xiàng)移到左邊,這樣會(huì)顯得簡(jiǎn)便些。

          去分母,將未知數(shù)的系數(shù)化為1,則是依據(jù)等式的基本性質(zhì)2進(jìn)行的。

          四、等式一定是方程嗎?方程一定是等式嗎?

          等式與方程有很多相同之處。如都是用等號(hào)連接的,等號(hào)左、右兩邊都是代數(shù)式,但它們還是有區(qū)別的。方程僅是含有未知數(shù)的等式,是等式中的特例。就是說(shuō),等式包含方程;反過(guò)來(lái),方程并不包含所有的等式。如,13+5=18,18-13=5都屬于等式,但它們并不是方程。因此,等式一定是方程的說(shuō)法是不對(duì)的。

          五、"解方程"與"方程的解"是一回事兒?jiǎn)?

          方程的解是使方程左、右兩邊相等的未知數(shù)的取值。而解方程是求方程的解或判斷方程無(wú)解的過(guò)程。即方程的解是結(jié)果,而解方程是一個(gè)過(guò)程。方程的解中的"解"是名詞,而解方程中的"解"是動(dòng)詞,二者不能混淆。

        我的自畫(huà)像四年級(jí)作文400字14

          首先你要有一個(gè)好的態(tài)度,有些人學(xué)習(xí)數(shù)學(xué),可能有的階段會(huì)喜歡學(xué)習(xí),但是某一階段,對(duì)數(shù)學(xué)就沒(méi)有什么興趣了,可能每個(gè)人都會(huì)有這樣一個(gè)階段,但是如果發(fā)現(xiàn)自己不喜歡學(xué)習(xí)數(shù)學(xué)了,一定要克制自己,在學(xué)習(xí)數(shù)學(xué)上,保持一個(gè)良好的學(xué)習(xí)態(tài)度,這是你學(xué)好數(shù)學(xué)的第一步。

          充分的利用好上課的時(shí)間,上課時(shí)間你所掌握的知識(shí),會(huì)比你在課下學(xué)很長(zhǎng)時(shí)間都有用,所以珍惜課堂老師所講的內(nèi)容,老師的某些話(huà)對(duì)我們以后做數(shù)學(xué)題都很有幫助,如果你上課走神,這些話(huà)沒(méi)有聽(tīng)到,你在做題的時(shí)候,可能會(huì)走很多彎路,做題的'效率也會(huì)降低,一旦有這樣的情況,可能你就會(huì)不喜歡數(shù)學(xué)了。

          學(xué)習(xí)最重要的是思考,會(huì)思考數(shù)學(xué)才能學(xué)好,數(shù)學(xué)中的題都是需要我們?nèi)ヅe一反三的,沒(méi)做一道題,都要思考一下,圍繞著這道題的知識(shí)點(diǎn),還會(huì)有什么樣的題型出現(xiàn),哪怕是遇到不會(huì)的題,也要勤加的思考,如果你把知識(shí)點(diǎn)自認(rèn)為學(xué)習(xí)透徹,那么就用做題檢驗(yàn)吧,數(shù)學(xué)中多做題是必須的,成績(jī)都是用題堆積出來(lái)的,很少會(huì)有人不做題數(shù)學(xué)成績(jī)很高的。

        我的自畫(huà)像四年級(jí)作文400字15

          中考沖刺數(shù)學(xué)知識(shí)點(diǎn)的幾個(gè)復(fù)習(xí)建議:

          1)所有的知識(shí)點(diǎn)自己先復(fù)習(xí)一遍,標(biāo)記好那些掌握不扎實(shí)的知識(shí),第二輪復(fù)習(xí)的重點(diǎn)!

          2)對(duì)于標(biāo)記不扎實(shí)的知識(shí),如果實(shí)在不理解,回到課本中查收相應(yīng)的內(nèi)容,特別是結(jié)合例題理解

          3)平常學(xué)校一定有很多練習(xí),把做錯(cuò)的題目和難題當(dāng)成寶貝,因?yàn)槲覀円脒M(jìn)步就這是捷徑——理解消化錯(cuò)題,所有保持積極的心態(tài)去面對(duì)那些錯(cuò)題難題吧。

          4)對(duì)于學(xué)過(guò)思維導(dǎo)圖的同學(xué),建議將這些知識(shí)點(diǎn)按章節(jié)梳理成知識(shí)體系,平常復(fù)習(xí)太好用了。

          以下是詳細(xì)的知識(shí)點(diǎn):

          一、一元一次方程根的情況

          △=b2-4ac

          當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根;

          當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根;

          當(dāng)△<0時(shí),一元二次方程沒(méi)有實(shí)數(shù)根

          2、平行四邊形的性質(zhì):

         、賰山M對(duì)邊分別平行的四邊形叫做平行四邊形。

         、谄叫兴倪呅尾幌噜彽膬蓚(gè)頂點(diǎn)連成的線段叫他的對(duì)角線。

         、燮叫兴倪呅蔚膶(duì)邊/對(duì)角相等。

         、芷叫兴倪呅蔚膶(duì)角線互相平分。

          菱形:

         、僖唤M鄰邊相等的平行四邊形是菱形

         、陬I(lǐng)心的四條邊相等,兩條對(duì)角線互相垂直平分,每一組對(duì)角線平分一組對(duì)角。

         、叟卸l件:定義/對(duì)角線互相垂直的平行四邊形/四條邊都相等的四邊形。

          矩形與正方形:

         、儆幸粋(gè)內(nèi)角是直角的平行四邊形叫做矩形。

         、诰匦蔚膶(duì)角線相等,四個(gè)角都是直角。

         、蹖(duì)角線相等的平行四邊形是矩形。

         、苷叫尉哂衅叫兴倪呅,矩形,菱形的一切性質(zhì)。

         、菀唤M鄰邊相等的矩形是正方形。

          多邊形:

         、貼邊形的內(nèi)角和等于(N-2)180度

         、诙噙呅膬(nèi)角的一邊與另一邊的反向延長(zhǎng)線所組成的角叫做這個(gè)多邊形的外角,在每個(gè)頂點(diǎn)處取這個(gè)多邊形的一個(gè)外角,他們的和叫做這個(gè)多邊形的內(nèi)角和(都等于360度)

          平均數(shù):對(duì)于N個(gè)數(shù)X1,X2…XN,我們把(X1+X2+…+XN)/N叫做這個(gè)N個(gè)數(shù)的算術(shù)平均數(shù),記為X

          加權(quán)平均數(shù):一組數(shù)據(jù)里各個(gè)數(shù)據(jù)的重要程度未必相同,因而,在計(jì)算這組數(shù)據(jù)的平均數(shù)時(shí)往往給每個(gè)數(shù)據(jù)加一個(gè)權(quán),這就是加權(quán)平均數(shù)。

          二、基本定理

          1、過(guò)兩點(diǎn)有且只有一條直線

          2、兩點(diǎn)之間線段最短

          3、同角或等角的補(bǔ)角相等

          4、同角或等角的余角相等

          5、過(guò)一點(diǎn)有且只有一條直線和已知直線垂直

          6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

          7、平行公理經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行

          8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

          9、同位角相等,兩直線平行

          10、內(nèi)錯(cuò)角相等,兩直線平行

          11、同旁?xún)?nèi)角互補(bǔ),兩直線平行

          12、兩直線平行,同位角相等

          13、兩直線平行,內(nèi)錯(cuò)角相等

          14、兩直線平行,同旁?xún)?nèi)角互補(bǔ)

          15、定理三角形兩邊的和大于第三邊

          16、推論三角形兩邊的差小于第三邊

          17、三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°

          18、推論1直角三角形的兩個(gè)銳角互余

          19、推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

          20、推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

          21、全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

          22、邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等

          23、角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等

          24、推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等

          25、邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等

          26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等

          27、定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

          28、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

          29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

          30、等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)

          31、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

          32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

          33、推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°

          34、等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)

          35、推論1三個(gè)角都相等的三角形是等邊三角形

          36、推論2有一個(gè)角等于60°的等腰三角形是等邊三角形

          37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半

          38、直角三角形斜邊上的中線等于斜邊上的一半

          39、定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

          40、逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

          41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合

          42、定理1關(guān)于某條直線對(duì)稱(chēng)的兩個(gè)圖形是全等形

          43、定理2如果兩個(gè)圖形關(guān)于某直線對(duì)稱(chēng),那么對(duì)稱(chēng)軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線

          44、定理3兩個(gè)圖形關(guān)于某直線對(duì)稱(chēng),如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱(chēng)軸上

          45、逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱(chēng)

          46、勾股定理直角三角形兩直角邊a、b的`平方和、等于斜邊c的平方,即a2+b2=c2

          47、勾股定理的逆定理如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形

          48、定理四邊形的內(nèi)角和等于360°

          49、四邊形的外角和等于360°

          50、多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°

          51、推論任意多邊的外角和等于360°

          52、平行四邊形性質(zhì)定理1平行四邊形的對(duì)角相等

          53、平行四邊形性質(zhì)定理2平行四邊形的對(duì)邊相等

          54、推論夾在兩條平行線間的平行線段相等

          55、平行四邊形性質(zhì)定理3平行四邊形的對(duì)角線互相平分

          56、平行四邊形判定定理1兩組對(duì)角分別相等的四邊形是平行四邊形

          57、平行四邊形判定定理2兩組對(duì)邊分別相等的四邊形是平行四邊形

          58、平行四邊形判定定理3對(duì)角線互相平分的四邊形是平行四邊形

          59、平行四邊形判定定理4一組對(duì)邊平行相等的四邊形是平行四邊形

          60、矩形性質(zhì)定理1矩形的四個(gè)角都是直角

          61、矩形性質(zhì)定理2矩形的對(duì)角線相等

          62、矩形判定定理1有三個(gè)角是直角的四邊形是矩形

          63、矩形判定定理2對(duì)角線相等的平行四邊形是矩形

          64、菱形性質(zhì)定理1菱形的四條邊都相等

          65、菱形性質(zhì)定理2菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角

          66、菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2

          67、菱形判定定理1四邊都相等的四邊形是菱形

          68、菱形判定定理2對(duì)角線互相垂直的平行四邊形是菱形

          69、正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等

          70、正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角

          71、定理1關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形是全等的

          72、定理2關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形,對(duì)稱(chēng)點(diǎn)連線都經(jīng)過(guò)對(duì)稱(chēng)中心,并且被對(duì)稱(chēng)中心平分

          73、逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱(chēng)

          74、等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等

          75、等腰梯形的兩條對(duì)角線相等

          76、等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形

          77、對(duì)角線相等的梯形是等腰梯形

          78、平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

          79、推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰

          80、推論2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊

          81、三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半

          82、梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2 S=L×h

          83、(1)比例的基本性質(zhì):

          如果a:b=c:d,那么ad=bc

          如果ad=bc ,那么a:b=c:d

          84、(2)合比性質(zhì):

          如果a/b=c/d,那么(a±b)/b=(c±d)/d

          85、(3)等比性質(zhì):

          如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

          86、平行線分線段成比例定理三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例

          87、推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例

          88、定理如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

          89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例

          90、定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似

          91、相似三角形判定定理1兩角對(duì)應(yīng)相等,兩三角形相似(ASA)

          92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似

          93、判定定理2兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS)

          94、判定定理3三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)

          95、定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似

          96、性質(zhì)定理1相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比

          97、性質(zhì)定理2相似三角形周長(zhǎng)的比等于相似比

          98、性質(zhì)定理3相似三角形面積的比等于相似比的平方

          99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

          100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

          101、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

          102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

          103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

          104、同圓或等圓的半徑相等

          105、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

          106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線

          107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

          108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

          109、定理不在同一直線上的三點(diǎn)確定一個(gè)圓。

          110、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

        【我的自畫(huà)像四年級(jí)作文400字】相關(guān)文章:

        我的自畫(huà)像作文07-09

        我的“自畫(huà)像”作文05-03

        我的自畫(huà)像作文07-11

        (精選)我的自畫(huà)像作文07-13

        我的自畫(huà)像作文(精選)08-10

        我的自畫(huà)像作文【經(jīng)典】09-29

        我的”自畫(huà)像“作文05-07

        我的自畫(huà)像作文(經(jīng)典)11-18

        [經(jīng)典]我的自畫(huà)像作文07-30

        我的自畫(huà)像作文04-28