《圓柱的體積》教學設(shè)計3篇【精華】
作為一名人民教師,往往需要進行教學設(shè)計編寫工作,借助教學設(shè)計可使學生在單位時間內(nèi)能夠?qū)W到更多的知識。那么寫教學設(shè)計需要注意哪些問題呢?下面是小編為大家整理的《圓柱的體積》教學設(shè)計,希望對大家有所幫助。
《圓柱的體積》教學設(shè)計1
一、復習導入
1、同學們想一想,我們已經(jīng)學習了哪些立體圖形的體積?怎樣計算長方體和正方體的體積?他們的體積體積的通用公式是什么?用字母怎么表示?
2、回憶一下圓面積的計算公式是如何推導出來的?
3、課件出示一個圓柱體
我們把圓轉(zhuǎn)化成了近似的長方形,同學們猜想一下圓柱可以轉(zhuǎn)化成什么圖形呢?
二、探索體驗
1、學生猜想可以把圓柱轉(zhuǎn)化成什么圖形?
2、課件演示:把圓柱體轉(zhuǎn)化成長方體
。1)是怎樣拼成的?
。2)觀察是不是標準的長方體?
。3)演示32等份、64等份拼成的長方體,比較一下發(fā)現(xiàn)了什么?引出課題并板書。
3、借鑒圓的面積公式的推導過程試著推導圓柱的體積公式。
4、交流展示
。1)小組討論,交流匯報。
。2)生匯報,師結(jié)合講解板書。圓柱的`體積=底面積x高
。3)用字母公式怎樣表示呢?v、s、h各表示什么?
5、知道哪些條件可以求出圓柱的體積?
6、計算下面圓柱的體積:
。1)底面積24平方厘米,高12厘米
。2)底面半徑2厘米,高5厘米
三、課題檢測
1、判斷
。1)圓柱體、長方體和正方體的體積都可以用底面積乘高的方法來計算。
。2)圓柱的底面積擴大3倍,體積也擴大3倍。
。3)圓柱體的底面直徑和高可以相等。
。4)兩個圓柱體的底面積相等,體積也一定相等。
。5)一個長方體與一個圓柱體底面積相等,高也相等,那么它們的體積也相等。
2、聯(lián)系生活實際解決實際問題。
。1)一個壓路機的前輪是圓柱形,輪寬2米,半徑1米,它的體積是多少立方米?
。2)一個塑料薄膜蓋的蔬菜大棚,長15米,橫截面是一個半徑2米的半圓,大棚內(nèi)的空間大約有多大?
四、全課總結(jié)這節(jié)課你有什么收獲?
《圓柱的體積》教學設(shè)計2
一、復習導入
1、回顧上節(jié)課內(nèi)容,提問:圓柱的特征,圓柱的表面積計算方法。
導入:這節(jié)課我們學習圓柱的體積、
2、想一想,提問:什么叫做體積?我們學過哪些物體的體積計算公式?
(物體所占空間的大小叫做體積、學過長方體正方體的、)
它們的計算公式是什么?可以歸納為:
長(正)方體的體積=底面積x高
3、想一想:圓面積計算公式的推導過程、
。ò褕A面積轉(zhuǎn)化為一個近似的長方形的面積,從而推導出圓面積的計算公式)
那么,能不能把圓柱轉(zhuǎn)化為我們已學過的圖形來計算它的體積?
二、新授:
敘:以上研究圓面積計算公式的方法叫做割補法,這種方法也適用于推導圓柱體積的計算公式、下面請同學們打開課本看書自學。
演示并提問:
。1)拼成的長方體的體積與圓柱的體積有什么關(guān)系?
。2)拼成的長方體的底面積與圓柱的哪部分有關(guān)系?有什么關(guān)系?
。3)拼成的長方體的高與圓柱的哪部分有關(guān)系?有什么關(guān)系?
總結(jié):長方體的體積與圓柱的體積相等,長方體的'底面積與圓柱的底面積相等,長方體的高與圓柱的高相等。
因為:圓柱的體積=長方體的體積
長方體的體積=底面積x高
↓↓↓
所以:圓柱的體積=底面積x高
用字母表示為:v=sh
運用以上公式,完成練習題、
。ㄗ⒁猓簡挝灰y(tǒng)一,要認真審題,認真計算、)
動腦筋,思考以下幾個問題:
已知如下條件,如何求圓柱的體積?
(1)底面積s、高h→→體積v=
。2)底面半徑r、高h→→體積v=
。3)底面直徑d、高h→→體積v=
。4)底面周長c、高h→→體積v=
強調(diào):圓柱的體積v=sh=rh,在沒有告訴底面積和高時,要先找底面半徑和高,應(yīng)用v=rh去計算。
三、鞏固練習(填表)
hvs=20平方分米
4分米
r=5厘米
10厘米
d=8分米
6分米
c=12、56米
2米
四、課堂小結(jié)
同學們,通過這堂課的學習你知道了些什么?誰來說一下。
回答得非常好,下去以后可以應(yīng)用所學知識去解答一些實際問題。
板書
圓柱的體積
圓柱的體積=底面積x高
↓↓↓
長方體的體積=底面積x高v=sh
作業(yè)完成習題
《圓柱的體積》教學設(shè)計3
教學目標:
1、使學生掌握圓柱體積公式,會用公式計算圓柱體積,能解決一些實際問題。
2、讓學生經(jīng)歷觀察、操作、討論等數(shù)學活動過程,理解圓柱體積公式的推導過程,引導學生探討問題,體驗轉(zhuǎn)化和極限的思想。
3、在圖形的變換中,培養(yǎng)學生的遷移能力、邏輯思維能力,并進一步發(fā)展其空間觀念,領(lǐng)悟?qū)W習數(shù)學的方法,激發(fā)學生興趣,滲透事物是普遍聯(lián)系的唯物辨證思想。
教學重點:
圓柱體積計算公式的推導過程并能正確應(yīng)用。
教學難點:
借助教具演示,弄清圓柱與長方體的關(guān)系。
教具準備:
多媒體課件、長方體、圓柱形容器若干個;學生準備推導圓柱體積計算公式用學具。
教學設(shè)想:
《圓柱的體積》是學生在有了圓柱、圓和長方體的相關(guān)的基礎(chǔ)上進行教學的。在知識與技能上,通過對圓柱的具體研究,理解圓柱的體積公式的推導過程,會計算圓柱的體積,在方法的選擇上,抓住新舊知識的聯(lián)系,通過想象、課件演示、實踐操作,從經(jīng)歷和體驗中思考,培養(yǎng)學生科學的思維方法;貼近學生生活實際,創(chuàng)設(shè)情境,解決問題,體現(xiàn)數(shù)學知識從生活中來到生活去的理念,激發(fā)學生的學習興趣和對科學知識的求知欲,使學生樂于探索,善于探索。
教學過程:
一、創(chuàng)設(shè)情境,激疑引入
水是生命之源!節(jié)約用水是我們每個公民應(yīng)盡的義務(wù)。前兩天,老師家的水龍頭出了問題,擰上閥門之后,還是不停的滴水,你們看,一刻鐘就滴了這么多的水。
1、出示裝了水的圓柱容器。
。1)啟發(fā)思考:容器里面的水形成了什么形狀?(圓柱)你能知道這些水的體積?
。2)討論后匯報
生1:用量筒或量杯直接量出它的體積;
生2:用秤稱出水的重量,然后進一步知道體積;
生3:把它倒入長方體容器中,從里面量出長、寬和水面的高后再計算。
師:現(xiàn)在老師只有這些工具(圓柱形容器,長方形容器,半圓形容器和其他不規(guī)則容器),你怎么辦?
生1:把水到入長方體容器中
生2:我們學過了長方體的體積計算,只要量出長、寬、高就行
[設(shè)計意圖:通過本環(huán)節(jié),給學生創(chuàng)設(shè)一個生活中的情境,提出問題,學習身邊的數(shù)學,激起學生的學習興趣;根據(jù)需要滲透圓柱體(新問題)和長方體(已知)的知識聯(lián)系為所學內(nèi)容作了鋪墊的準備]
2、創(chuàng)設(shè)問題情境。
師:(課件顯示)如果要求某些建筑中圓柱形柱子的體積,或是求壓路機圓柱形大前輪的'體積,能用同學們想出來的辦法嗎?
[設(shè)計意圖:進一步從實際需要提出問題,激發(fā)學生從問題中思考尋求一種更廣泛的方法來解決圓柱體積的問題的欲望]
師:今天,就讓我們來研究解決任意圓柱體積的方法。(板書課題:圓柱的體積)
二、經(jīng)歷體驗,探究新知
1、回顧舊知,幫助遷移
。1)教師首先提出具體問題:圓柱體和我們以前學過的哪些幾何圖形有聯(lián)系?
生1:圓柱的上下兩個底面是圓形
生2:側(cè)面展開是長方形
生3:說明圓柱和我們學過的圓和長方形有聯(lián)系
師:請同學們想想圓柱的體積與什么有關(guān)?
生1:可能與它的大小有關(guān)
生2:不是吧,應(yīng)該與它的高有關(guān)
[設(shè)計意圖:溫故而知新,既復習了舊知識又引出了新知識,學生在不知不覺中就學到了新知。]
。2)請大家回憶一下:在學習圓的面積時,我們是怎樣將圓轉(zhuǎn)化成已學過的圖形,來推導出圓面積公式的。
配合學生回答演示課件。
[設(shè)計意圖:通過想象,進一步發(fā)展學生的空間觀念,由形到體;同時使學生感悟圓柱的體積與它的底面積和高的聯(lián)系,通過圓面積推導過程的再現(xiàn),為實現(xiàn)經(jīng)驗和方法的遷移作鋪墊]
2、小組合作,探究新知
。1)啟發(fā)猜想:我們要解決圓柱的體積的問題,可以怎么辦?(引導學生說出圓柱可能轉(zhuǎn)化成我們學過的長方體。并通過討論得出:反圓柱的底面積分成許多相等的扇形,然后反圓柱切開,再拼起來,就轉(zhuǎn)化近似的長方體了。)
(2)學生以小組為單位操作體驗。
把圓柱的底面積分成許多相等的扇形,然后把圓柱切開,再把它拼起來,就轉(zhuǎn)化成近似的長方體了。使學生進一步明確分的份數(shù)越多,形體中的越接近,也就越接近長方體。同時演示一組動畫(將圓柱底面等分成32份、64等份、128等份)
[設(shè)計意圖:教師提出問題,學生帶著問題大膽猜測、動手體驗。這樣學生在自主探索、體驗、領(lǐng)悟的過程中成為了發(fā)現(xiàn)者和創(chuàng)造者。]
(3)學生小組匯報交流
近似的長方體的體積等于圓柱的體積,近似的長方體的底面積等于圓柱的底面積,近似的長方體的高就是圓柱的高。根據(jù)長方體的體積等于底面積乘高,得出圓柱的體積也等于底面積乘高。
教師根據(jù)學生匯報,用教具進行演示。
(4)概括板書:根據(jù)圓柱與近似長方體的關(guān)系,推導公式
長方體的體積=底面積高
圓柱的體積=底面積高
用字母表示計算公式V=sh
[設(shè)計意圖:首先通過學生的聯(lián)想建立圓柱體和長方體的聯(lián)系,初步建立轉(zhuǎn)化的雛形,然后再通過實踐操作,動畫演示,驗證了學生的發(fā)現(xiàn),從學生的認識和發(fā)現(xiàn)中,圍繞著圓柱體和長方體之間的聯(lián)系,抽象出圓柱體的體積公式。這個過程,學生從形象具體的知識形成過程(想象、操作、演示)中,認識得以升華(較抽象的認識公式)]
三、實踐應(yīng)用,鞏固新知。
1、火眼金睛判對錯。
(1)長方體、正方體、圓柱的體積都等于底面積乘高。()
。2)圓柱的高越大,圓柱的體積就越大。()
。3)如果兩個圓柱的體積相等,則它們一定等底等高。()
[設(shè)計意圖:加深對剛學知識的分析和理解。]
2、計算下面各圓柱的體積。
。1)底面積是30平方厘米,高4厘米。
(2)底面周長是12.56米,高是2米。
(3)底面半徑是2厘米,高10厘米。
[設(shè)計意圖:讓學生靈活運用公式進行計算。]
3、實踐練習。
提供在創(chuàng)設(shè)情景中圓柱形接水容器的內(nèi)底面直徑和高。
這個圓柱形容器,內(nèi)底面直徑是10厘米,高12厘米,水面高度10厘米。
[設(shè)計意圖:讓學生領(lǐng)悟數(shù)學與現(xiàn)實生活的聯(lián)系。]
4、課堂作業(yè)。
為了美化環(huán)境,陽光小區(qū)在樓前的空地上建了四個同樣大小的圓柱形花壇;▔牡酌鎯(nèi)直徑為4米,高為0、6米,如果里面填土的高度是0、4米,這四個花壇共需要填土多少立方米?
[設(shè)計意圖:使學生進一步感受到生活中處處有數(shù)學,同時培養(yǎng)學生的環(huán)保意識。]
四、反思回顧
師:通過本節(jié)課的學習,你有什么收獲嗎?
[設(shè)計意圖:讓不同層次的學生談學習收獲,可使每個學生都體驗到成功的喜悅。這樣,學生的收獲不僅只有知識,還包括能力、方法、情感等,學生體驗到學習的樂趣,增強了學好數(shù)學的信心。]
板書
圓柱的體積
根據(jù)圓柱與近似長方體的關(guān)系,推導公式
長方體的體積=底面積高
圓柱的體積=底面積高
用字母表示計算公式V=sh
教學反思:
本節(jié)的教學從生活的實際創(chuàng)設(shè)情境,提出問題,讓學生學習有用的數(shù)學,提高了學生運用數(shù)學知識解決身邊問題的能力,從學數(shù)學的角度,注意了數(shù)學知識的特點。運用已有的知識(長方體體積的計算)經(jīng)驗(圓面積公式的推導)解決新的問題,在新舊知識的聯(lián)系上,巧妙的利用想象、課件演示將圓和圓柱有機的聯(lián)系到一起,使學生想象合理、聯(lián)系有方。在探究新知中,通過想象和操作,讓學生充分經(jīng)歷了知識的形成過程,為較抽象的理論概括提供了必要而有效的感性材料,加強了實踐與知識的聯(lián)系,并創(chuàng)造性的補充了一些與學生身邊實際生活相聯(lián)系的練習題,提高了學生的學習興趣
【《圓柱的體積》教學設(shè)計】相關(guān)文章:
《圓柱的體積》教學設(shè)計06-03
“圓柱的體積”教學設(shè)計06-05
“圓柱的體積”教學設(shè)計常用11-18
圓柱體積教學設(shè)計05-31
《圓柱的體積》教學設(shè)計15篇06-27
圓柱的體積說課稿02-02
六年級教學設(shè)計《圓柱的體積》06-05
《體積和體積單位》教學設(shè)計06-09