日韩精品福利免费观看高清,综合亚洲国产2020,99热只有精品这里,国产精品久久久久久久福利

    1. <address id="kobe1"></address>
      
      
      <td id="kobe1"><tbody id="kobe1"><listing id="kobe1"></listing></tbody></td>

        我要投稿 投訴建議

        《等腰三角形的性質(zhì)》說課稿

        時間:2023-01-05 10:25:57 說課稿 我要投稿
        • 相關(guān)推薦

        《等腰三角形的性質(zhì)》說課稿

          作為一名人民教師,通常需要用到說課稿來輔助教學(xué),說課稿有助于提高教師理論素養(yǎng)和駕馭教材的能力。那么問題來了,說課稿應(yīng)該怎么寫?下面是小編整理的《等腰三角形的性質(zhì)》說課稿,希望對大家有所幫助。

        《等腰三角形的性質(zhì)》說課稿

          《等腰三角形的性質(zhì)》說課稿1

          一、教材分析

          本節(jié)課是在學(xué)習(xí)了軸對稱圖形以及全等三角形的判定的基礎(chǔ)上進(jìn)行的,主要學(xué)習(xí)等腰三角形的“等邊對等角”和“等腰三角形的三線合一”兩個性質(zhì)。本節(jié)內(nèi)容是對前面知識的深化和應(yīng)用,它的性質(zhì)定理不僅是證明角相等、線段相等及兩直線互相垂直的依據(jù),而且也是后繼學(xué)習(xí)線段垂直平分線、等腰梯形的預(yù)備知識。因此,本節(jié)內(nèi)容在教材中處于非常重要的地位,起著承前啟后的作用。

          二、教學(xué)目的

          (一)知識目標(biāo):知道等腰三角形的定義及相關(guān)概念,理解等腰三角形的性質(zhì),會利用等腰三角形的性質(zhì)進(jìn)行簡單的推理、判斷和計算。

         。ǘ┠芰δ繕(biāo):通過實踐,觀察,證明等腰三角形性質(zhì),發(fā)展學(xué)生合情推理和演繹推理能力,通過運用等腰三角形的性質(zhì)解決有關(guān)問題,提高分析問題、解決問題能力。

         。ㄈ┣楦心繕(biāo):在實際操作動手中激發(fā)學(xué)生的學(xué)習(xí)興趣,體驗幾何發(fā)現(xiàn)的.樂趣,從而增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識。

          三、教學(xué)重、難點

         。ㄒ唬┲攸c:等腰三角形的性質(zhì)的探究及應(yīng)用

         。ǘ╇y點:等腰三角形“三線合一”性質(zhì)的運用

          四、教學(xué)方法

         。ㄒ唬┙谭ǎ

          本節(jié)課采用了教具直觀教學(xué)法,聯(lián)想發(fā)現(xiàn)教學(xué)法,設(shè)疑思考法,逐步滲透法和師生交際相結(jié)合的方法。

          (二)學(xué)法:

          本節(jié)課主要引導(dǎo)學(xué)生從已知的、熟悉的知識入手,讓學(xué)生自己在某一種環(huán)境下不知不覺中運用舊知識的鑰匙去打開新知識的大門,進(jìn)入新知識的領(lǐng)域,從不同角度去分析、解決新問題,發(fā)掘不同層次學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力和自學(xué)能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。

          五、教學(xué)過程

         。ㄒ唬﹦(chuàng)設(shè)情景,引入新知

          我們學(xué)過三角形,你都知道哪些特殊的三角形?今天我們來學(xué)習(xí)其中的一種特殊的三角形——等腰三角形。

          等腰三角形的有關(guān)概念,軸對稱圖形的有關(guān)概念。

          提問:等腰三角形是不是軸對稱圖形?什么是它的對稱軸?

          (二)實驗探索,大膽猜想

          教師演示(模型)等腰三角形是軸對稱圖形的實驗,并讓學(xué)生做同樣的實驗,引導(dǎo)學(xué)生觀察重合部分,發(fā)現(xiàn)等腰三角形的一些性質(zhì)。

         。ㄈ┳C明猜想,形成定理

          讓學(xué)生由實驗或演示指出各自的發(fā)現(xiàn),并加以引導(dǎo),用規(guī)范的數(shù)學(xué)語言進(jìn)行逐條歸納,最后得出等腰三角形的性質(zhì)定理1、2。

          1、性質(zhì)定理1:

          等腰三角形的兩個底角相等

          在△ABC中,∵AB=AC()∴∠B=∠C()

          2、性質(zhì)定理2:

          等腰三角形的頂角平分線、底邊上的中線和高線互相重合

         。1)∵AB=AC∠1=∠2()∴BD=DCAD⊥BC()

         。2)∵AB=ACBD=DC()∴∠1=∠2AD⊥BC()

         。3)∵AB=ACAD⊥BC于D()∴BD=DC∠1=∠2()

         。ㄋ模⿷(yīng)用舉例,強(qiáng)化訓(xùn)練

          指導(dǎo)學(xué)生表述證明過程。

          思考題:等腰三角形兩腰上的中線(高線)是否相等?為什么?

          (五)歸納小結(jié),布置作業(yè)

          1、歸納:

          (1)等腰三角形的性質(zhì)定理。

          (2)等邊三角形的性質(zhì)

         。3)利用等腰三角形的性質(zhì)定理可證明:兩角相等,兩線段相等,兩直線互相垂直。

         。4)聯(lián)想方法要經(jīng)常運用,對解題大有裨益。

          2、作業(yè)布置:

         。1)必做題:

          書本課后作業(yè)

          (2)選做題:搜集日常生活中應(yīng)用等腰三角形的實例,并思考這些實例運用了等腰三角形的哪些性質(zhì)?

          《等腰三角形的性質(zhì)》說課稿2

          今天我說課的內(nèi)容是義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書《數(shù)學(xué)》八年級上冊第十二章12、3、1等腰三角形性質(zhì)第一課時。下面,我從教材分析、教法分析、學(xué)法分析、教學(xué)過程、教學(xué)反思五個方面來匯報我對這節(jié)課的教學(xué)設(shè)想。

          一、教材分析

          1、教材的地位與作用:

          本節(jié)課內(nèi)容是在學(xué)生掌握了一般三角形和軸對稱的知識,具有初步的推理證明能力的基礎(chǔ)上進(jìn)行學(xué)習(xí)的。使學(xué)生學(xué)會分析、學(xué)會證明,在培養(yǎng)學(xué)生的思維能力和推理能力等方面有重要的作用。通過等腰三角形的性質(zhì)反映在一個三角形中“等邊對等角”的邊角關(guān)系,并且是對軸對稱圖形性質(zhì)的直觀反映(三線合一)。它所倡導(dǎo)的“觀察———發(fā)現(xiàn)———猜想———論證”的數(shù)學(xué)思想方法是今后研究數(shù)學(xué)的基本思想方法。等腰三角形的性質(zhì)也是論證兩個角相等、兩條線段相等、兩條直線垂直的重要依據(jù),因此,本節(jié)內(nèi)容在教材中處于非常重要的地位,起著承前啟后的作用。

          2、教學(xué)目標(biāo):

          知識技能:理解掌握等腰三角形的性質(zhì);運用等腰三角形的性質(zhì)進(jìn)行證明和計算。

          過程方法:通過實踐、觀察、證明等腰三角形的性質(zhì),發(fā)展學(xué)生合情推理能力和演繹推理能力。

          解決問題:通過觀察等腰三角形的對稱性,及運用等腰三角形的性質(zhì)解決有關(guān)的問題,提高學(xué)生觀察、分析、歸納、運用知識解決問題的能力,發(fā)展應(yīng)用意識。

          情感態(tài)度:通過引導(dǎo)學(xué)生對圖形的觀察、發(fā)現(xiàn),激發(fā)學(xué)生的好奇心和求知欲,并在運用數(shù)學(xué)知識解答問題的活動中獲取成功的體驗,建立學(xué)習(xí)的自信心。

          (根據(jù)教材內(nèi)容的地位與作用及教學(xué)目標(biāo),因此我將把本節(jié)課的重點確定為:等腰三角形的性質(zhì)的探究和應(yīng)用。由于對文字語言敘述的幾何命題的證明要求嚴(yán)格且步驟繁瑣,此時八年級學(xué)生還沒有深刻的理解和熟練的掌握,因此我將把本節(jié)課的難點定為:等腰三角形性質(zhì)的推理證明。)

          3、教學(xué)重點與難點:

          重點:等腰三角形的性質(zhì)的探索和應(yīng)用。

          難點:等腰三角形性質(zhì)的推理證明。

          二、教法設(shè)計:

          教法設(shè)想:我采用探索發(fā)現(xiàn)法和啟發(fā)式教學(xué)法完成本節(jié)的教學(xué),在教學(xué)中通過創(chuàng)設(shè)情景,設(shè)計問題,引導(dǎo)學(xué)生自主探索,合作交流,組織學(xué)生動手操作,觀察現(xiàn)象,提出猜想,推理論證等。有效地啟發(fā)學(xué)生的思考,使學(xué)生真正成為學(xué)習(xí)的主體。

          三、學(xué)法設(shè)計:

          在學(xué)生學(xué)習(xí)的過程中,我將從兩個方面指導(dǎo)學(xué)生學(xué)習(xí)等腰三角形:一方面老師大膽放手,讓學(xué)生去自主探究等腰三角形的性質(zhì),另一方面,在對等腰三角形性質(zhì)的證明過程中,老師要巧妙引導(dǎo),分散難點。這樣做既有利于活躍學(xué)生的思維,又能幫助他們探本求源,這樣也體現(xiàn)了以“教師為主導(dǎo),學(xué)生為主體”的新課改背景下的教學(xué)原則。

          四、教學(xué)過程:

          根據(jù)制定的教學(xué)目標(biāo),圍繞重點,突破難點,我將從以下七個方面設(shè)計我的教學(xué)過程:

          1、創(chuàng)設(shè)情景:

          首先向同學(xué)們出示精美的建筑物圖片,并提出問題串:

         。1)什么是軸對稱圖形?這些圖片中有軸對稱圖形嗎?

         。2)里面有等腰三角形嗎?然后向?qū)W生介紹等腰三角形的定義以及邊角等相關(guān)的概念,由于學(xué)生小學(xué)就已經(jīng)接觸過,所以學(xué)生很容易理解。再提出第三個問題:

         。3)a、等腰三角形是軸對稱圖形嗎?b、等腰三角形具備哪些性質(zhì)呢?引出本節(jié)課的課題—我們這節(jié)課來探究等腰三角形的性質(zhì)!鍟n題。

          2、動手操作,大膽猜想:

         、倌贸稣n下制作的等腰三角形的紙片,它是軸對稱圖形嗎?對稱軸是誰?用你手中的紙片說明你的看法?②等腰三角形沿對稱軸折疊后,你能得到哪些結(jié)論?(看誰得到的結(jié)論多)

         、鄯纸M討論。(看哪一組氣氛最活躍,結(jié)論又對又多、)

          然后小組代表發(fā)言,交流討論結(jié)果。

         、軞w納:你能猜想得到等腰三角形具有什么性質(zhì)?你能用文字語言歸納一下嗎?

          (教師引導(dǎo)學(xué)生進(jìn)行總結(jié)歸納得出性質(zhì)1,2)

          性質(zhì)1:等腰三角形的兩底角相等。(簡寫成“等邊對等角”)

          性質(zhì)2:等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。(簡稱“三線合一”)

         。ㄔO(shè)計意圖:由學(xué)生自己動手折紙活動,根據(jù)等腰三角形軸對稱性,大膽猜測等腰三角形的性質(zhì),培養(yǎng)學(xué)生的觀察分析、概括總結(jié)能力。也發(fā)展了學(xué)生的幾何直觀。教師在學(xué)生猜想的基礎(chǔ)上,引導(dǎo)學(xué)生觀察、完善、歸納出性質(zhì)1和性質(zhì)2。培養(yǎng)了學(xué)生進(jìn)行合情推理的能力。)

          3、證明猜想,形成定理:

          你能證明等腰三角形的性質(zhì)嗎?

          對于這種幾何命題的證明需要三大步驟:分析題設(shè)結(jié)論,畫出圖形寫出已知和求證,最后進(jìn)行推理證明。這對于八年級學(xué)段的學(xué)生難度較大,為了突破難點,我決定設(shè)計以下三個階梯問題:

         。1)找出“性質(zhì)1”的題設(shè)和結(jié)論,畫出的圖形,寫出已知和求證。

          (2)證明角和角相等有哪些方法?(學(xué)生可能會想到平行線的性質(zhì),全等三角形的性質(zhì))

         。3)通過折疊等腰三角形紙片,你認(rèn)為本題用什么方法證明∠B=∠C,寫出證明過程。

          問題1的設(shè)計使得學(xué)生順利地將文字語言轉(zhuǎn)化為符號語言,幫助學(xué)生順利地寫出已知和求證;

          問題2提供給學(xué)生了解題思路,引導(dǎo)學(xué)生用舊的知識解決新的問題,體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想。找到新知識的生長點,就是三角形的全等。

          問題3的設(shè)計目的:因為輔助線的添加是本題中的又一難點,因此讓學(xué)生對折等腰三角形紙片,使兩腰重合,使學(xué)生在形成感性認(rèn)識的同時,意識到要證明∠B=∠C,關(guān)鍵是將∠B和∠C放在兩三角形中去,構(gòu)造全等三角形,老師再及時設(shè)問:你認(rèn)為可以通過什么方法可以將∠B和∠C放在兩個三角形中去呢?再次讓學(xué)生思考,由于對知識的發(fā)生,發(fā)展有了充分的了解,學(xué)生探討以后可能會得出以下三種方法:

          (1)作頂角∠BAC的平分線,

         。2)作底邊BC的中線,

          (3)作底邊BC的高。以作頂角平分線為例,讓一生板演,其他學(xué)生在練習(xí)本上寫出完整的證明過程。以達(dá)到規(guī)范學(xué)生的.解題步驟的目的。其他兩種證法,讓學(xué)生課下證明。這樣,學(xué)生就證明了性質(zhì)1,同時由于△BAD≌△CAD,也很容易得出等腰三角形的頂角平分線平分底邊,并垂直于底邊。用類似的方法還可以證明等腰三角形底邊的中線平分頂角且垂直于底邊,等腰三角形底邊上的高平分頂角且平分底邊,這也就證明了性質(zhì)2。

          (設(shè)計意圖:教師精心設(shè)計問題串引導(dǎo)學(xué)生通過動手,觀察,猜想,歸納,猜測出等腰三角形的性質(zhì),發(fā)展了學(xué)生的合情推理能力,同時也讓學(xué)生明確,結(jié)論的正確性需要通過演繹推理加以證明。這樣把對性質(zhì)的證明作為探索活動的自然延續(xù)和必要發(fā)展,使學(xué)生感受到合情推理與演繹推理是相輔相成的兩種形式,同時感受到探索證明同一個問題的不同思路和方法,發(fā)展了學(xué)生思維的廣闊性和靈活性。)

          (4)你能用符號語言表示性質(zhì)1和性質(zhì)2嗎?

          (設(shè)計意圖:把文字語言轉(zhuǎn)換為符號語言,讓學(xué)生建立符號意識,這有助于學(xué)生理解符號的使用是數(shù)學(xué)表達(dá)和進(jìn)行數(shù)學(xué)思考的重要形式。——

          4、性質(zhì)的應(yīng)用:

          例一:在等腰△ABC中,AB=AC,∠A=50°,則∠B=_____,∠C=______

          變式練習(xí)題:

          1、在等腰中,∠A=50°,則∠B=___,∠C=___

          2、在等腰中,∠A=100°,則∠B=___,∠C=___

          設(shè)計意圖:此例題的重點是運用等腰三角形“等邊對等角”這一性質(zhì)和三角形的內(nèi)角和,突出頂角和底角的關(guān)系,如

          例一,學(xué)生就比較容易得出正確結(jié)果,對變式練習(xí)題(1)、(2)學(xué)生得出正確的結(jié)果就有困難,容易漏解,讓學(xué)生把變式題與例一進(jìn)行比較兩題的條件,讓學(xué)生認(rèn)識等腰三角形在沒有明確頂角和底角時,應(yīng)分類討論:變式1(如圖)①當(dāng)∠A=50°為頂角時,則∠B=65°,∠C=65°。②當(dāng)∠A=50°為底角時,則∠B=50°,∠C=80°;或∠B=80°,∠C=50°。變式2①當(dāng)∠A=100°為頂角時,則∠B=40°,∠C=40°。②當(dāng)∠A=100°為底角時,則△ABC不存在。由此得出,等腰三角形中已知一個角可以求出另兩個角(頂角和底角的取值范圍:0°<頂角<180°,0°<底角<90°)。

          例二:在等腰△ABC中,AB=5,AC=6,則△ABC的周長=_______

          變式練習(xí)題:在等腰△ABC中,AB=5,AC=12,則△ABC的周長=______

         。ㄔO(shè)計意圖:此例題的重點是運用等腰三角形的定義,以及等腰三角形腰和底邊的關(guān)系,并強(qiáng)調(diào)在沒有明確腰和底邊時,應(yīng)該分兩種情況討論。如例二,①當(dāng)AB=5為腰時,則三邊為5,5,6;②當(dāng)AB=5為底時,則三邊為6,6,5。變式練習(xí)題①:當(dāng)AB=5為腰時,三邊為5,5,12;②當(dāng)AB=5為底時,三邊為12,12,5。此時同學(xué)們就會毫不猶豫地得出三角形的周長,這時老師就可以提出質(zhì)疑,讓同學(xué)們之間討論(學(xué)生容易忽視三角形三邊關(guān)系,看能否構(gòu)成一個三角形)。

          例三、如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)。

         。ɡ3是課本例題,有一定難度,讓學(xué)生展開討論,老師參與討論,認(rèn)真聽取學(xué)生分析,引導(dǎo)學(xué)生找出角之間的關(guān)系,利用方程的思想解決問題,并書寫出解答過程。本題運用了等腰三角形性質(zhì)1,并體現(xiàn)了利用方程解決幾何問題的思想。)

          例四:

          在△ABC中,點D在BC上,給出4個條件:①AB=AC②∠BAD=∠DAC③AD⊥BC④BD=CD,以其中2個條件作題設(shè),另外2個條件作結(jié)論,你能寫出一個正確的命題嗎?看誰寫得多。(分組討論搶答)

          5、鞏固提高

         。1)等腰三角形一腰上的高與另一腰的夾角為30°,則這個等腰三角形頂角為度。

         。2)如圖,在△ABC中,AB=AC,D是BC邊上的中點,∠B=30。求∠1和∠ADC的度數(shù)。

         。3)課本本章數(shù)學(xué)活動三“等腰三角形中相等的線段”

          設(shè)計意圖:

         。1)題運用等腰三角形的性質(zhì)1及等腰三角形一腰上的高的畫法,由于題目沒有圖,要用到分類討論的數(shù)學(xué)思想,學(xué)生能正確畫出銳角和鈍角三角形兩種圖形就容易得出結(jié)果,也滲透了一題多解。

         。2)題同時運用了等腰三角形的性質(zhì)1,性質(zhì)2,還有三角形的內(nèi)角和這三個知識點,培養(yǎng)學(xué)生對于知識的靈活運用,“討論”是本章的數(shù)學(xué)活動3“等腰三角形中相等的線段”。與等腰性質(zhì)的證明思路類似,先通過等腰三角形的對稱性猜想距離是相等的,然后通過做輔助線構(gòu)造全等三角形來進(jìn)行嚴(yán)密的推理。更加說明了合情推理和演繹推理是相輔相成的。

          6、課堂小結(jié):不僅僅說你收獲了什么,而是讓學(xué)生從知識上,思想方法上,以及輔助線的做法上等方面具體總結(jié)一下。然后教師結(jié)合學(xué)生的回答完善本節(jié)知識結(jié)構(gòu)。學(xué)生對于自己的疑惑提出小組內(nèi)交流,還沒解決則全班交流。

          7、布置作業(yè):

          P55練習(xí)1、2、3題

          P56習(xí)題1、4、6,(選做7,8題)

          《等腰三角形的性質(zhì)》說課稿3

          一、教材分析

          1、教材的地位和作用

          《等腰三角形的性質(zhì)》是“華東師大版八年級數(shù)學(xué)(上)”第十三章第三節(jié)第一課時的內(nèi)容。本節(jié)先課利用軸對稱的知識來探索發(fā)現(xiàn)等腰三角形的有關(guān)性質(zhì),然后利用全等三角形的知識證明這些性質(zhì)。學(xué)習(xí)過程中運用的“操作——觀察——發(fā)現(xiàn)——猜想——論證——應(yīng)用”的方法是探究數(shù)學(xué)知識的常用方法。同時“等邊對等角”和“三線合一”的性質(zhì)是又是接下來學(xué)習(xí)等邊三角形知識以及等腰三角形的判定的基礎(chǔ)知識,更是今后論證兩個角相等、兩條線段相等、兩條線垂直的重要依據(jù)。起著承前啟后的作用。

          2、教材的教學(xué)目標(biāo):

         、僦R與技能目標(biāo):

          掌握等腰三角形的有關(guān)概念和相關(guān)性質(zhì),能運用它們解決等腰三角形的邊、角計算問題。

         、谶^程與方法目標(biāo):

          通過實踐、觀察、同組間學(xué)生以及小組與小組間的合作與交流,培養(yǎng)學(xué)生多角度思考問題和分析問題、解決問題的能力。③情感與態(tài)度目標(biāo):

          通過合作交流培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作、樂于助人的品質(zhì)。

          3、教學(xué)重點與難點:

          重點:等腰三角形“等邊對等角”和“三線合一”性質(zhì)的探究和應(yīng)用。

          難點:等腰三角形性質(zhì)的推理證明。

          二、學(xué)情分析

          八年級上期學(xué)生學(xué)習(xí)幾何知識有了初步的抽象思維感知,有一定的形象直觀思維能力,能進(jìn)行簡單的推理論證。但其運用數(shù)學(xué)思維的廣闊性、緊密性、靈活性比較欠缺,在學(xué)習(xí)過程中要加強(qiáng)引導(dǎo)和培養(yǎng)。

          三、教法與手段

          根據(jù)本課內(nèi)容特點和初二學(xué)生思維活動的特點,在教學(xué)中我將采用“操作——觀察——發(fā)現(xiàn)——猜想——論證——應(yīng)用”的教學(xué)法,利用分組活動,組間合作與交流從而達(dá)到對“等邊對等角”和“三線合一”的性質(zhì)的探究的層層深入。另外,我還將采用多媒體輔助教學(xué),呈現(xiàn)更直觀的形象,激發(fā)學(xué)生的積極性、主動性,增大課堂容量,提高教學(xué)效率。

          四、學(xué)法設(shè)計

          《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:數(shù)學(xué)的抽象結(jié)論,應(yīng)以觀察、實驗為前提,幾何教學(xué)應(yīng)該把實驗方法與邏輯分析結(jié)合起來。結(jié)合這一理念在探究等腰三角形的性質(zhì)時我將采用學(xué)生實驗操作、小組合作、觀察發(fā)現(xiàn)、師生互動、學(xué)生互動的學(xué)習(xí)方式。

          五、教學(xué)過程設(shè)計

         。ㄒ唬﹦(chuàng)設(shè)情景、導(dǎo)入新課

         、購(fù)習(xí)提問:向同學(xué)們出示幾張精美的建筑物圖片,引入等腰三角形。

         。ㄔO(shè)計意圖:感知數(shù)學(xué)知識和實際生活聯(lián)系緊密,培養(yǎng)觀察力,感受身邊處處有數(shù)學(xué)。)

         、诘妊切蔚南嚓P(guān)概念:

          1定義:兩條邊相等的三角形叫做等腰三角形。

          邊:等腰三角形中,相等的兩條邊叫做腰,另一條邊叫做底邊。

          角:等腰三角形中,兩腰的夾角叫做頂角,腰和底邊的夾角叫做底角。

         、墼O(shè)問:等腰三角形具有哪些特殊的性質(zhì)呢?(引入新課)

         。ǘ⿲嶒炋剿鳌⒌贸霾孪耄

         、賱觿邮郑鹤屚瑢W(xué)們用剪刀在長方形紙片上剪下等腰三角形,每個人的等腰三角形的大小

          和形狀可以不一樣,把紙片對折,讓兩腰重合在一起,你能發(fā)現(xiàn)什么現(xiàn)象?“比一比”看誰思考的結(jié)論最多。

         。ㄔO(shè)計意圖:以六人小組為單位學(xué)生親自操作實驗,填寫導(dǎo)學(xué)案。通過組內(nèi)合作與交流,集

          思廣益讓學(xué)生用自己的語言在小組內(nèi)表達(dá)自己的發(fā)現(xiàn)。)

         、诘贸霾孪耄嚎勺寣W(xué)生有充分的時間觀察、思考、交流、可能得到的結(jié)論:

         。1)等腰三角形是軸對稱圖形

         。2)∠B=∠C

          (3)BD=CD,AD為底邊上的中線

         。4)∠ADB=∠ADC=90°,AD為底邊上的高線

          (5)∠BAD=∠CAD,AD為頂角平分線

         。ㄔO(shè)計意圖:以小組為單位派代表發(fā)言即組間交流補充,引導(dǎo)歸納提煉,使不同層次的學(xué)生都能感受新知,建立新的知識體系,為進(jìn)一步探索做準(zhǔn)備。)

          (三)證明猜想、形成定理:

          1、結(jié)論(2)∠B=∠C你能用一個命題表達(dá)這一結(jié)論并論證它的正確性嗎?

         。1)語言總結(jié):等腰三角形的兩底角相等。(簡寫成“等邊對等角”)

         。2)怎樣論證這個一命題的.正確性呢?

         、贋樽C∠B=∠C,需要添加輔助線構(gòu)造以∠B、∠C為元素的兩個全等三角形。

          ②探討添加輔助線的方法,讓學(xué)生選擇一種輔助線并完成證明過程。

          設(shè)計說明:以上過程分小組討論,在探索過程中鼓勵學(xué)生尋求不同(作高、中線、角平分線)的方法來解決問題。

          利用展臺展示各小組不同的證明方法,讓學(xué)生的個性得到充分的展示。

         。3)得出等腰三角形的性質(zhì)1:等腰三角形的兩底角相等。(簡寫成“等邊對等角”)

          2、結(jié)論(3)(4)(5)你也能用一個命題表達(dá)這一結(jié)論并論證它的正確性嗎?

         。1)結(jié)合性質(zhì)一的證明鼓勵學(xué)生證明總結(jié)的命題

          (2)得出等腰三角形的性質(zhì)2:等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。

         。3)“三線合一”的幾何表達(dá):

          如圖,在△ABC中,AB=AC,點D在BC上

         、伲1)如果∠BAD=∠CAD,那么AD⊥BC,BD=CD

         、冢2)如果BD=CD,那么∠BAD=∠CAD,AD⊥BC(為了方便記憶可以說成“知一求二!”)

         、郏3)如果AD⊥BC,那么∠BAD=∠CAD,BD=CD

          2設(shè)計意圖:充分調(diào)動各組學(xué)生的積極性、主動性,采用各小組競爭的方式,參照性質(zhì)1的探索完成本性質(zhì)的探索與證明。通過本性質(zhì)的探索讓不同的學(xué)生有不同的收獲,讓每個學(xué)生的能力都得到提升。

         。ㄋ模⿲嵗饰、鞏固新知:

          1、例1:已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度數(shù)

          2、例2:在△ABC中,AB=AC,點D是BC的中點,∠B=30

         。1)求∠ADC的度數(shù)(2)求∠BAD的度數(shù)

          此題的目的在于等腰三角形“等邊對等角”和“三線合一”性質(zhì)的綜合運用,以及怎么書寫解答題,強(qiáng)調(diào)“三線合一”的表達(dá)過程。

          解:(1)∵AB=AC,D是BC邊上的中點(已知)

          ∴AD⊥BC,∠BAD=∠CAD(等腰三角形的“三線合一”)∴∠ADC=∠ADB=90°(垂直的定義)

         。2)∵∠BAD+∠B+∠ADB=180°(三角形內(nèi)角和等于180°)∴∠BAD=180°—∠B—∠ADB

          =180°—30°—90°=60°

         。ㄔO(shè)計意圖:設(shè)計例題1鞏固等腰三角形“等邊對等角的性質(zhì)”的理解,讓學(xué)生學(xué)以致用,獲得成就感,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的自信心。而例題2主要是體會等腰三角形“三線合一”性質(zhì)的運用。這兩個例題作為課本上的例題是基礎(chǔ)新知的鞏固,要求能正確的寫出解題過程。)

         。ㄎ澹┱n堂練習(xí)、總結(jié)所得:

          1、先完成課后81頁練習(xí)1、2、3、4題

         。ㄔO(shè)計意圖:作為課本上的練習(xí)題的完成達(dá)到檢測學(xué)生對本節(jié)課知識的掌握情況,從而幫助學(xué)生查漏補缺,鞏固基礎(chǔ)知識。)

          2、學(xué)以致用:

          (設(shè)計意圖:讓書生體會數(shù)學(xué)知識和實際生活的緊密聯(lián)系)

          如圖,是西安半坡博物館屋頂?shù)慕孛鎴D,已經(jīng)知道它的兩邊AB和AC是相等的、建筑工人師傅對這個建筑物做出了兩個判斷:

         、俟と藥煾翟跍y量了∠B為37°以后,并沒有測量∠C,就說∠C的度數(shù)也是37°。②工人師傅要加固屋頂,他們通過測量找到了橫梁BC的中點D,然后在AD兩點之間釘上一根木樁,他們認(rèn)為木樁是垂直橫梁的。

          請同學(xué)們想想,工人師傅的說法對嗎?請說明理由。

          設(shè)計意圖:運用所學(xué)知識解決實際問題,引導(dǎo)學(xué)生將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,進(jìn)一步加深學(xué)生對等腰三角形性質(zhì)的理解和運用;從數(shù)學(xué)回到實際生活,自然地滲透數(shù)學(xué)作用于實際問題的思想。

          3、課堂小結(jié)

          今天我們學(xué)習(xí)了什么?你覺得在等腰三角形的學(xué)習(xí)中要注意哪些問題?設(shè)計意圖:幫助學(xué)生回顧,歸納,鞏固所學(xué)知識。A(六)作業(yè)布置、深化提高:

          1、課本P84:習(xí)題13、31、2、3;(必做題)

          2、(思維發(fā)散)選做題

          已知:如圖△ABC中,AB=AC,CE⊥AEE1于E,CE=BCB2

          求證:∠ACE=∠BC

        【《等腰三角形的性質(zhì)》說課稿】相關(guān)文章:

        比的基本性質(zhì)說課稿06-14

        分?jǐn)?shù)基本性質(zhì)說課稿02-09

        《分?jǐn)?shù)的基本性質(zhì)》說課稿12-14

        金屬的化學(xué)性質(zhì)說課稿12-11

        金屬的化學(xué)性質(zhì)說課稿12-10

        分?jǐn)?shù)的基本性質(zhì)說課稿范文04-18

        分?jǐn)?shù)的基本性質(zhì)說課稿優(yōu)秀03-28

        分?jǐn)?shù)的基本性質(zhì)說課稿(精選12篇)07-15

        分?jǐn)?shù)的基本性質(zhì)說課稿(精選20篇)06-08

        初三《酸的化學(xué)性質(zhì)》說課稿03-26